|
[1]
|
Moulon, P., Monasse, P. and Marlet, R. (2013) Global Fusion of Relative Motions for Robust, Accurate and Scalable Structure from Motion. 2013 IEEE International Conference on Computer Vision, Sydney, 1-8 December 2013, 3248-3255. [Google Scholar] [CrossRef]
|
|
[2]
|
Heller, J., Havlena, M., Jancosek, M., Torii, A. and Pajdla, T. (2015) 3D Reconstruction from Photographs by CMP SfM Web Service. 2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, 18-22 May 2015, 30-34. [Google Scholar] [CrossRef]
|
|
[3]
|
Schonberger, J.L. and Frahm, J. (2016) Structure-from-Motion Revisited. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 4104-4113. [Google Scholar] [CrossRef]
|
|
[4]
|
Cui, H., Gao, X., Shen, S. and Hu, Z. (2017) HSFM: Hybrid Structure-from-Motion. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 2393-2402. [Google Scholar] [CrossRef]
|
|
[5]
|
Yin, H.Y. and Yu, H.Y. (2020) Incremental SFM 3D Reconstruction Based on Monocular. 2020 13th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, 12-13 December 2020, 17-21. [Google Scholar] [CrossRef]
|
|
[6]
|
Seitz, S.M., Curless, B., Diebel, J., Scharstein, D. and Szeliski, R. (2006) A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 17-22 June 2006, 519-528.
|
|
[7]
|
Sinha, S.N., Mordohai, P. and Pollefeys, M. (2007) Multi-View Stereo via Graph Cuts on the Dual of an Adaptive Tetrahedral Mesh. 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, 14-21 October 2007, 1-8. [Google Scholar] [CrossRef]
|
|
[8]
|
Lin, X.B., Wang, J.X. and Lin, C. (2020) Research on 3D Reconstruction in Binocular Stereo Vision Based on Feature Point Matching Method. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, 27-29 September 2020, 551-556. [Google Scholar] [CrossRef]
|
|
[9]
|
Wang, Y.X., Lu, Y.W., Xie, Z.H. and Lu, G.Y. (2021) Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment. Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, 20-24 October 2021, 1350-1358. [Google Scholar] [CrossRef]
|
|
[10]
|
Lindenberger, P., Sarlin, P., Larsson, V. and Pollefeys, M. (2021) Pixel-Perfect Structure-From-Motion with Featuremetric Refinement. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 5967-5977. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhou, L., Zhang, Z., Jiang, H., Sun, H., Bao, H. and Zhang, G. (2021) DP-MVS: Detail Preserving Multi-View Surface Reconstruction of Large-Scale Scenes. Remote Sensing, 13, Article 4569. [Google Scholar] [CrossRef]
|
|
[12]
|
Eigen D., Puhrsch, C. and Fergus, R. (2014) Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network. International Conference on Neural Information Processing Systems, Cambridge, 8-13 December 2014, 2366-2374.
|
|
[13]
|
Eigen, D. and Fergus, R. (2015) Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 2650-2658. [Google Scholar] [CrossRef]
|
|
[14]
|
Crispell, D. and Bazik, M. (2017) Pix2Face: Direct 3D Face Model Estimation. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, 22-29 October 2017, 2512-2518. [Google Scholar] [CrossRef]
|
|
[15]
|
Yao, Y., Luo, Z., Li, S., Fang, T. and Quan, L. (2018) MVSNet: Depth Inference for Unstructured Multi-View Stereo. In: Lecture Notes in Computer Science, Springer, 785-801. [Google Scholar] [CrossRef]
|
|
[16]
|
Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T. and Quan, L. (2019) Recurrent MVSNet for High-Resolution Multi-View Stereo Depth Inference. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 5520-5529. [Google Scholar] [CrossRef]
|
|
[17]
|
Chen, R., Han, S., Xu, J. and Su, H. (2019) Point-Based Multi-View Stereo Network. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 1538-1547. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, J., Yao, Y., Li, S., Luo, Z. and Fang, T. (2020) Visibility-Aware Multi-View Stereo Network. Proceedings of the British Machine Vision Conference 2020, Manchester, 7-10 September 2020, 184-200. [Google Scholar] [CrossRef]
|
|
[19]
|
Wei, Z., Zhu, Q., Min, C., Chen, Y. and Wang, G. (2021) AA-RMVSNet: Adaptive Aggregation Recurrent Multi-View Stereo Network. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 6167-6176. [Google Scholar] [CrossRef]
|
|
[20]
|
Peng, R., Wang, R., Wang, Z., Lai, Y. and Wang, R. (2022) Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 18-24. [Google Scholar] [CrossRef]
|
|
[21]
|
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R. and Ng, R. (2020) NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In: Lecture Notes in Computer Science, Springer, 405-421. [Google Scholar] [CrossRef]
|
|
[22]
|
Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P. and Lin, T. (2021). iNeRF: Inverting Neural Radiance Fields for Pose Estimation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, 27 September-1 October 2021, 1323-1330. [CrossRef]
|
|
[23]
|
Xu, Q.G., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., et al. (2022) Point-NeRF: Point-Based Neural Radiance Fields. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 5428-5438. [Google Scholar] [CrossRef]
|
|
[24]
|
Xu, L., Xiangli, Y., Peng, S., Pan, X., Zhao, N., Theobalt, C., et al. (2023) Grid-Guided Neural Radiance Fields for Large Urban Scenes. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17-24 June 2023, 8296-8306. [Google Scholar] [CrossRef]
|
|
[25]
|
Stucker, C. and Schindler, K. (2020) ResDepth: Learned Residual Stereo Reconstruction. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, 14-19 June 2020, 707-716. [Google Scholar] [CrossRef]
|
|
[26]
|
Peng, S.D., Zhang, Y.Q., Xu, Y.H., Wang, Q.Q., Shuai, Q., Bao, H.J. and Zhou, X.W. (2021) Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 9050-9059. [Google Scholar] [CrossRef]
|
|
[27]
|
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K. and Gao, L. (2022) StylizedNeRF: Consistent 3D Scene Stylization as Stylized Nerf via 2D-3D Mutual Learning. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 18321-18331. [Google Scholar] [CrossRef]
|
|
[28]
|
Yu, L., Li, X., Fu, C., Cohen-Or, D. and Heng, P. (2018) Pu-Net: Point Cloud Upsampling Network. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 2790-2799. [Google Scholar] [CrossRef]
|
|
[29]
|
Li, R., Li, X., Fu, C., Cohen-Or, D. and Heng, P. (2019) PU-GAN: A Point Cloud Upsampling Adversarial Network. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 7202-7211. [Google Scholar] [CrossRef]
|
|
[30]
|
He, Y., Tang, D., Zhang, Y., Xue, X. and Fu, Y. (2023) Grad-Pu: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent with Learned Distance Functions. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17-24 June 2023, 5354-5363. [Google Scholar] [CrossRef]
|
|
[31]
|
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R. and Ng, R. (2020) NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In: Lecture Notes in Computer Science, Springer, 405-421. [Google Scholar] [CrossRef]
|
|
[32]
|
Li, S.Y., Yang, W. and Liao, Q. (2024) PMAFusion: Projection-Based Multi-Modal Alignment for 3D Semantic Occupancy Prediction. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, 17-18 June 2024, 3627-3634. [Google Scholar] [CrossRef]
|
|
[33]
|
Jiang, H.W., Huang, Q. and Pavlakos, G. (2024) Real3D: Scaling up Large Reconstruction Models with Real-World Images. [Google Scholar] [CrossRef]
|
|
[34]
|
Yoshida, S., Sun, Z., Yoshizawa, S., Michikawa, T., Noda, S., Micheletto, R., et al. (2024). Image Compressed Sensing Based on Vision-Inspired Importance Maps. 2024 IEEE International Conference on Imaging Systems and Techniques (IST), Tokyo, 14-16 October 2024, 1-6. [CrossRef]
|
|
[35]
|
He, Y.C., Wang, F., Wang, S.Y. and Chen, B.D. (2017) Diffusion Adaptation Framework for Compressive Sensing Reconstruction. Signal Processing, 176, Article 107660.
|
|
[36]
|
Oikonomou, V.P., Nikolopoulos, S. and Kompatsiaris, I. (2019) A Novel Compressive Sensing Scheme under the Variational Bayesian Framework. 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, 2-6 September 2019, 1-5. [Google Scholar] [CrossRef]
|
|
[37]
|
Li, S., Ling, Z. and Zhu, K. (2024) Image Super Resolution by Double Dictionary Learning and Its Application to Tool Wear Monitoring in Micro Milling. Mechanical Systems and Signal Processing, 206, Article 110917. [Google Scholar] [CrossRef]
|
|
[38]
|
Beck, A. and Teboulle, M. (2009) A Fast Iterative Shrinkage-Thresholding Algorithm with Application to Wavelet-Based Image Deblurring. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, 19-24 April 2009, 693-696. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, C.B. (2010) An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing. Master’s Thesis, Rice University.
|
|
[40]
|
Bian, S. and Zhang, L. (2021) Overview of Match Pursuit Algorithms and Application Comparison in Image Reconstruction. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, 14-16 April 2021, 216-221. [Google Scholar] [CrossRef]
|
|
[41]
|
Khatib, R., Simon, D. and Elad, M. (2020) Learned Greedy Method (LGM): A Novel Neural Architecture for Sparse Coding and beyond. Journal of Visual Communication and Image Representation, 77, Article 103095. [Google Scholar] [CrossRef]
|
|
[42]
|
Li, S., Wang, H., Liu, T., Cui, Z., Chen, J.N. and Xia, Z. (2021) A Fast Barzilai-Borwein Gradient Projection for Sparse Reconstruction Algorithm Based on 3D Modeling: Application to ERT Imaging. IEEE Access, 9, 152913-152922. [Google Scholar] [CrossRef]
|
|
[43]
|
Yang, Y., Sun, J., Li, H. and Xu, Z. (2020) ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 521-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, X., Ran, J. and Zhou, Z. (2022) An Efficient 3D Radar Imaging Algorithm Based on FISTA. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Chengdu, 26-29 August 2022, 419-423. [Google Scholar] [CrossRef]
|
|
[45]
|
Huang, S., Chen, Y. and Qiao, T. (2021) An Extended Reweighted ℓ1 Minimization Algorithm for Image Restoration. Mathematics, 9, Article 3224. [Google Scholar] [CrossRef]
|
|
[46]
|
Edgar, M.P., Gibson, G.M. and Padgett, M.J. (2018) Principles and Prospects for Single-Pixel Imaging. Nature Photonics, 13, 13-20. [Google Scholar] [CrossRef]
|
|
[47]
|
Monin, S., Hahamovich, E. and Rosenthal, A. (2021) Single-Pixel Imaging of Dynamic Objects Using Multi-Frame Motion Estimation. Scientific Reports, 11, Article No. 7712. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhuang, Z., Li, T.H., Wang, H.K., et al. (2022) Blind Image Deblurring with Unknown Kernel Size and Substantial Noise. [Google Scholar] [CrossRef]
|
|
[49]
|
Song, H., Nie, X., Su, H., Chen, H., Zhou, Y., Zhao, X., et al. (2021) 0.8% Nyquist Computational Ghost Imaging via Non-Experimental Deep Learning. Optics Communications, 520, Article 128450. [Google Scholar] [CrossRef]
|
|
[50]
|
Zhang, H., Zhao, Q., Xu, W., Wang, Y., Li, F., Liu, S., et al. (2024) Optical Single-Channel Color Image Encryption Based on Chaotic Palmprint Phase Masks. Journal of Optics, 53, 3342-3350. [Google Scholar] [CrossRef]
|
|
[51]
|
Liu, S.P., Wu, H., Li, Q., Meng, X. and Yin, Y. (2023) Super-Coding Resolution Single-Pixel Imaging Based on Unpaired Data-Driven Deep Learning. Optics and Lasers in Engineering, 170, Article 107786. [Google Scholar] [CrossRef]
|
|
[52]
|
Liang, J.Y., Cao, J.Z., Sun, G.L., Zhang, K., et al. (2021) SwinIR: Image Restoration Using Swin Transformer. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, 11-17 October 2021, 1833-1844. [Google Scholar] [CrossRef]
|
|
[53]
|
Zhang, K., Liang, J.Y., Van Gool, L. and Timofte, R. (2021) Designing a Practical Degradation Model for Deep Blind Image Super-Resolution. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 4771-4780. [Google Scholar] [CrossRef]
|
|
[54]
|
Salvetti, F., Mazzia, V., Khaliq, A. and Chiaberge, M. (2020) Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks. Remote Sensing, 12, Article No. 2207. [Google Scholar] [CrossRef]
|
|
[55]
|
Song, Q., Xiu, M., Nie, Y., Hu, M. and Liu, C. (2024) CoT-MISR: Marrying Convolution and Transformer for Multi-Image Super-Resolution. Multimedia Tools and Applications, 83, 76891-76903. [Google Scholar] [CrossRef]
|
|
[56]
|
Li, H.A., Zheng, Q.X., Tao, R.L., et al. (2023) Review of Image Super-Resolution Based on Deep Learning. Journal of Graphics, 44, 1-15.
|
|
[57]
|
倪劼, 柳青远, 周莉. 利用改进的Real-ESRGAN模型进行历史图像超分辨率重建研究[J]. 信息与管理研究, 2025, 10(1): 65-77.
|
|
[58]
|
Xie, J. and Cheng, X. (2024) Volleyball Game Tactical Data Prediction System Using Computer Vision Technology. 2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII), Melbourne, 12-14 June 2024, 588-594. [Google Scholar] [CrossRef]
|
|
[59]
|
Nicolson, E., Mohseni, E., Lines, D., Tant, K.M.M., Pierce, G. and MacLeod, C.N. (2024) Towards an In-Process Ultrasonic Phased Array Inspection Method for Narrow-Gap Welds. NDT & E International, 144, Article 103074. [Google Scholar] [CrossRef]
|
|
[60]
|
马钟, 赵歆波, 艾鑫, 张珂. 涡轮叶片X射线图像超分辨率重建技术[J]. CT理论与应用研究(中英文), 2010, 19(1): 41-47.
|
|
[61]
|
Sobek, J., Medina Inojosa, J.R., Medina Inojosa, B.J., et al. (2023) MedYOLO: A Medical Image Object Detection Framework. [Google Scholar] [CrossRef]
|
|
[62]
|
Guo, Z., Li, X., Huang, H., Guo, N. and Li, Q. (2019) Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 3, 162-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Avram, O., Durmus, B., Rakocz, N., Corradetti, G., An, U., Nittala, M.G., et al. (2024) Accurate Prediction of Disease-Risk Factors from Volumetric Medical Scans by a Deep Vision Model Pre-Trained with 2D Scans. Nature Biomedical Engineering, 9, 507-520. [Google Scholar] [CrossRef] [PubMed]
|