|
[1]
|
Guo, Y., Chen, X., Gong, P., Long, H., Wang, J., Yang, W., et al. (2024) Siraitia grosvenorii as a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. Journal of Agricultural and Food Chemistry, 72, 6850-6870. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gao, Y., Pu, C., Feng, Y., Xu, P., Xie, B., Yu, L., et al. (2025) Siraitia grosvenorii Extract Improves Insulin Tolerance and Pancreatic Islet Function in Ageing and HFD-Induced Diabetic Mice. Food & Function, 16, 6870-6883. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Huang, H., Peng, Z., Zhan, S., Li, W., Liu, D., Huang, S., et al. (2024) A Comprehensive Review of Siraitia grosvenorii (Swingle) C. Jeffrey: Chemical Composition, Pharmacology, Toxicology, Status of Resources Development, and Applications. Frontiers in Pharmacology, 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Itkin, M., Davidovich-Rikanati, R., Cohen, S., Portnoy, V., Doron-Faigenboim, A., Oren, E., et al. (2016) The Biosynthetic Pathway of the Nonsugar, High-Intensity Sweetener Mogroside V from Siraitia grosvenorii. Proceedings of the National Academy of Sciences, 113, E7619-E7628. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Duan, J., Zhu, D., Zheng, X., Ju, Y., Wang, F., Sun, Y., et al. (2023) Siraitia grosvenorii (swingle) C. Jeffrey: Research Progress of Its Active Components, Pharmacological Effects, and Extraction Methods. Foods, 12, Article 1373. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shivani, Thakur, B.K., Mallikarjun, C.P., Mahajan, M., Kapoor, P., Malhotra, J., et al. (2021) Introduction, Adaptation and Characterization of Monk Fruit (Siraitia grosvenorii): A Non-Caloric New Natural Sweetener. Scientific Reports, 11, Article No. 6205. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tu, D., Luo, Z., Wu, B., Ma, X., Shi, H., Mo, C., et al. (2017) Developmental, Chemical and Transcriptional Characteristics of Artificially Pollinated and Hormone-Induced Parthenocarpic Fruits of Siraitia grosvenorii. RSC Advances, 7, 12419-12428. [Google Scholar] [CrossRef]
|
|
[8]
|
Agarwal, M., Shrivastava, N. and Padh, H. (2008) Advances in Molecular Marker Techniques and Their Applications in Plant Sciences. Plant Cell Reports, 27, 617-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ambreetha, S. and Balachandar, D. (2022) SCAR Marker: A Potential Tool for Authentication of Agriculturally Important Microorganisms. Journal of Basic Microbiology, 63, 4-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Grover, A. and Sharma, P.C. (2014) Development and Use of Molecular Markers: Past and Present. Critical Reviews in Biotechnology, 36, 290-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shahwar, D., Khan, Z. and Park, Y. (2023) Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. International Journal of Molecular Sciences, 24, Article 15490. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cooper, D.N. and Schmidtke, J. (1984) DNA Restriction Fragment Length Polymorphisms and Heterozygosity in the Human Genome. Human Genetics, 66, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V.D., Hornes, M., et al. (1995) AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Research, 23, 4407-4414. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers. Nucleic Acids Research, 18, 6531-6535. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hadrys, H., Balick, M. and Schierwater, B. (1992) Applications of Random Amplified Polymorphic DNA (RAPD) in Molecular Ecology. Molecular Ecology, 1, 55-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Babu, K.N., Sheeja, T.E., Minoo, D., Rajesh, M.K., Samsudeen, K., Suraby, E.J., et al. (2020) Random Amplified Polymorphic DNA (RAPD) and Derived Techniques. In: Methods in Molecular Biology, Springer US, 219-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
陶莉, 王跃进, 尤敏, 王有为. AFLP用于构建罗汉果DNA指纹图谱及其幼苗雌雄鉴别[J]. 武汉植物学研究, 2005, 23(1): 77-80.
|
|
[18]
|
韦弟. 罗汉果(Siraitia grosvenorii)性别的分子标记研究[D]: [硕士学位论文]. 南宁: 广西大学, 2005.
|
|
[19]
|
黄夕洋. 罗汉果性别性状的遗传标记研究[D]. 桂林: 广西师范大学, 2006.
|
|
[20]
|
黄姿梅. 罗汉果性别的分子标记研究[D]. 桂林: 广西师范大学, 2007.
|
|
[21]
|
张会新, 张继贤. 一种鉴别罗汉果性别的SCAR分子标记[P]. 中国专利, CN104073550A. 2014-10-01.
|
|
[22]
|
莫长明, 郭文锋, 李忠, 张玉. 罗汉果性别基因SgACS2及其扩增方法[P]. 中国专利, CN108624595A. 2018-10-09.
|
|
[23]
|
刘晓林, 张智伟, 许大华, 张淑丽. 一种基于特异性分子标记的罗汉果雌雄株[P]. 中国专利, CN109182581A. 2019-01-11.
|
|
[24]
|
谢文娟, 吴钰坡, 黄江, 刘彦延, 林军, 莫长明. 罗汉果性别相关的SCAR标记筛选[J]. 北方园艺, 2019(8): 32-39.
|
|
[25]
|
Xia, M., Han, X., He, H., Yu, R., Zhen, G., Jia, X., et al. (2018) Improved de Novo Genome Assembly and Analysis of the Chinese Cucurbit Siraitia grosvenorii, Also Known as Monk Fruit or Luo-han-guo. GigaScience, 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Boualem, A., Berthet, S., Devani, R.S., Camps, C., Fleurier, S., Morin, H., et al. (2022) Ethylene Plays a Dual Role in Sex Determination and Fruit Shape in Cucurbits. Current Biology, 32, 2390-2401. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., et al. (2008) A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 321, 836-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Boualem, A., Troadec, C., Camps, C., Lemhemdi, A., Morin, H., Sari, M., et al. (2015) A Cucurbit Androecy Gene Reveals How Unisexual Flowers Develop and Dioecy Emerges. Science, 350, 688-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, D. (2009) Control of Anther Cell Differentiation: A Teamwork of Receptor-Like Kinases. Sexual Plant Reproduction, 22, 221-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, D., Sheng, Y., Niu, H. and Li, Z. (2019) Gene Interactions Regulating Sex Determination in Cucurbits. Frontiers in Plant Science, 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., et al. (2009) A Transposon-Induced Epigenetic Change Leads to Sex Determination in Melon. Nature, 461, 1135-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, S., Tan, F., Chung, C., Slavkovic, F., Devani, R.S., Troadec, C., et al. (2022) The Control of Carpel Determinacy Pathway Leads to Sex Determination in Cucurbits. Science, 378, 543-549. [Google Scholar] [CrossRef] [PubMed]
|