|
[1]
|
Fol, M., Chauhan, A., Nair, N.K., Maloney, E., Moomey, M., Jagannath, C., et al. (2006) Modulation of Mycobacterium tuberculosis Proliferation by MtrA, an Essential Two‐Component Response Regulator. Molecular Microbiology, 60, 643-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dietz, P., Gerlach, G. and Beier, D. (2002) Identification of Target Genes Regulated by the Two-Component System HP166-HP165 of Helicobacter pylori. Journal of Bacteriology, 184, 350-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Miller, S.I., Kukral, A.M. and Mekalanos, J.J. (1989) A Two-Component Regulatory System (phoP phoQ) Controls Salmonella typhimurium Virulence. Proceedings of the National Academy of Sciences, 86, 5054-5058. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Stock, A.M., Robinson, V.L. and Goudreau, P.N. (2000) Two-Component Signal Transduction. Annual Review of Biochemistry, 69, 183-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Groisman, E.A. (2016) Feedback Control of Two-Component Regulatory Systems. Annual Review of Microbiology, 70, 103-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gao, R. and Stock, A.M. (2009) Biological Insights from Structures of Two-Component Proteins. Annual Review of Microbiology, 63, 133-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Groisman, E.A., Duprey, A. and Choi, J. (2021) How the PhoP/PhoQ System Controls Virulence and Mg2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiology and Molecular Biology Reviews, 85, e0017620. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ninfa, A.J. and Magasanik, B. (1986) Covalent Modification of the glnG Product, NRI, by the glnL Product, NRII, Regulates the Transcription of the glnALG Operon in Escherichia coli. Proceedings of the National Academy of Sciences, 83, 5909-5913. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nixon, B.T., Ronson, C.W. and Ausubel, F.M. (1986) Two-Component Regulatory Systems Responsive to Environmental Stimuli Share Strongly Conserved Domains with the Nitrogen Assimilation Regulatory Genes ntrB and ntrC. Proceedings of the National Academy of Sciences, 83, 7850-7854. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Appleby, J.L., Parkinson, J.S. and Bourret, R.B. (1996) Signal Transduction via the Multi-Step Phosphorelay: Not Necessarily a Road Less Traveled. Cell, 86, 845-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
邱全胜. 双组分系统——细胞识别渗透胁迫信号的感应器[J]. 生物化学与生物物理进展, 2000(6): 593-596.
|
|
[12]
|
Mizuno, T. (1997) Compilation of All Genes Encoding Two-Component Phosphotransfer Signal Transducers in the Genome of Escherichia coli. DNA Research, 4, 161-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Maeda, T., Wurgler-Murphy, S.M. and Saito, H. (1994) A Two-Component System That Regulates an Osmosensing MAP Kinase Cascade in Yeast. Nature, 369, 242-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zeinert, R., Zhou, F., Franco, P., Zöller, J., Madni, Z. K., Lessen, H. and Matthies, D. (2025) P-Type ATPase Magnesium Transporter MgtA Acts as a Dimer. Nature Structural & Molecular Biology, 32, 1633-1643.
|
|
[15]
|
Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis Ethylene-Response Gene etr1: Similarity of Product to Two-Component Regulators. Science, 262, 539-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Galcheva-Gargova, Z., Dérijard, B., Wu, I. and Davis, R.J. (1994) An Osmosensing Signal Transduction Pathway in Mammalian Cells. Science, 265, 806-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, X., Wu, Y., Gao, X., Cai, M. and Shuai, J. (2018) Wave Failure at Strong Coupling in Intracellular Ca2+ Signaling System with Clustered Channels. Physical Review E, 97, Article ID: 012406. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Qi, H., Li, L. and Shuai, J. (2015) Optimal Microdomain Crosstalk between Endoplasmic Reticulum and Mitochondria for Ca2+ Oscillations. Scientific Reports, 5, Article No. 7984. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, X., Zhong, C., Yin, Z., Qi, H., Xu, F., He, Q., et al. (2020) Data-Driven Modeling Identifies TIRAP-Independent MyD88 Activation Complex and Myddosome Assembly Strategy in LPS/TLR4 Signaling. International Journal of Molecular Sciences, 21, Article No. 3061. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, C., Guttridge, D.C., Mayo, M.W. and Baldwin, A.S. (1999) NF-κB Induces Expression of the Bcl-2 Homologue A1/Bfl-1 to Preferentially Suppress Chemotherapy-Induced Apoptosis. Molecular and Cellular Biology, 19, 5923-5929. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Stites, E.C., Trampont, P.C., Ma, Z. and Ravichandran, K.S. (2007) Network Analysis of Oncogenic Ras Activation in Cancer. Science, 318, 463-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Steinway, S.N., Zañudo, J.G.T., Ding, W., Rountree, C.B., Feith, D.J., Loughran, T.P., et al. (2014) Network Modeling of TGFβ Signaling in Hepatocellular Carcinoma Epithelial-to-Mesenchymal Transition Reveals Joint Sonic Hedgehog and Wnt Pathway Activation. Cancer Research, 74, 5963-5977. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pujana, M.A., Han, J.J., Starita, L.M., Stevens, K.N., Tewari, M., Ahn, J.S., et al. (2007) Network Modeling Links Breast Cancer Susceptibility and Centrosome Dysfunction. Nature Genetics, 39, 1338-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Batchelor, E. and Goulian, M. (2003) Robustness and the Cycle of Phosphorylation and Dephosphorylation in a Two-Component Regulatory System. Proceedings of the National Academy of Sciences, 100, 691-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, J. and Morrison, D.A. (1987) Modulation of Competence for Genetic Transformation in Streptococcus pneumoniae. Microbiology, 133, 1959-1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Morrison, D.A. (1997) Streptococcal Competence for Genetic Transformation: Regulation by Peptide Pheromones. Microbial Drug Resistance, 3, 27-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Karlsson, D., Karlsson, S., Gustafsson, E., Normark, B.H. and Nilsson, P. (2007) Modeling the Regulation of the Competence-Evoking Quorum Sensing Network in Streptococcus pneumoniae. Biosystems, 90, 211-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Coffey, T.J., Dowson, C.G., Daniels, M., Zhou, J., Martin, C., Spratt, B.G., et al. (1991) Horizontal Transfer of Multiple Penicillin‐Binding Protein Genes, and Capsular Biosynthetic Genes, in Natural Populations of Streptococcus pneumoniae. Molecular Microbiology, 5, 2255-2260. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Coffey, T.J., Enright, M.C., Daniels, M., Morona, J.K., Morona, R., Hryniewicz, W., et al. (1998) Recombinational Exchanges at the Capsular Polysaccharide Biosynthetic Locus Lead to Frequent Serotype Changes among Natural Isolates of Streptococcus pneumoniae. Molecular Microbiology, 27, 73-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hollingshead, S.K., Becker, R. and Briles, D.E. (2000) Diversity of Pspa: Mosaic Genes and Evidence for Past Recombination in Streptococcus pneumoniae. Infection and Immunity, 68, 5889-5900. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Roncarati, D., Vannini, A. and Scarlato, V. (2025) Temperature Sensing and Virulence Regulation in Pathogenic Bacteria. Trends in Microbiology, 33, 66-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ween, O., Gaustad, P. and Håvarstein, L.S. (1999) Identification of DNA Binding Sites for ComE, a Key Regulator of Natural Competence in Streptococcus pneumoniae. Molecular Microbiology, 33, 817-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Håvarstein, L.S., Coomaraswamy, G. and Morrison, D.A. (1995) An Unmodified Heptadecapeptide Pheromone Induces Competence for Genetic Transformation in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences, 92, 11140-11144. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pestova, E.V., Håvarstein, L.S. and Morrison, D.A. (1996) Regulation of Competence for Genetic Transformation in Streptococcus pneumoniae by an Auto‐Induced Peptide Pheromone and a Two‐Component Regulatory System. Molecular Microbiology, 21, 853-862. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Peterson, S.N., Sung, C.K., Cline, R., Desai, B.V., Snesrud, E.C., Luo, P., et al. (2003) Identification of Competence Pheromone Responsive Genes in Streptococcus pneumoniae by Use of DNA Microarrays. Molecular Microbiology, 51, 1051-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Campbell, E.A., Choi, S.Y. and Masure, H.R. (1998) A Competence Regulon in Streptococcus pneumoniae Revealed by Genomic Analysis. Molecular Microbiology, 27, 929-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lee, M.S. and Morrison, D.A. (1999) Identification of a New Regulator in Streptococcus pneumoniae Linking Quorum Sensing to Competence for Genetic Transformation. Journal of Bacteriology, 181, 5004-5016. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, P. and Morrison, D.A. (2003) Transient Association of an Alternative Sigma Factor, Comx, with RNA Polymerase during the Period of Competence for Genetic Transformation in Streptococcus pneumoniae. Journal of Bacteriology, 185, 349-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Martin, B., Garcia, P., Castanié, M. and Claverys, J. (1995) The reca Gene of Streptococcus pneumoniae Is Part of a Competence‐Induced Operon and Controls Lysogenic Induction. Molecular Microbiology, 15, 367-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pestova, E.V. and Morrison, D.A. (1998) Isolation and Characterization of Three Streptococcus pneumoniae Transformation-Specific Loci by Use of a lacz Reporter Insertion Vector. Journal of Bacteriology, 180, 2701-2710. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Luo, P., Li, H. and Morrison, D.A. (2003) ComX Is a Unique Link between Multiple Quorum Sensing Outputs and Competence in Streptococcus pneumoniae. Molecular Microbiology, 50, 623-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Mitrophanov, A.Y., Hadley, T.J. and Groisman, E.A. (2010) Positive Autoregulation Shapes Response Timing and Intensity in Two-Component Signal Transduction Systems. Journal of Molecular Biology, 401, 671-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Shin, D., Lee, E., Huang, H. and Groisman, E.A. (2006) A Positive Feedback Loop Promotes Transcription Surge That Jump-Starts Salmonella Virulence Circuit. Science, 314, 1607-1609. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ray, J.C.J. and Igoshin, O.A. (2010) Adaptable Functionality of Transcriptional Feedback in Bacterial Two-Component Systems. PLOS Computational Biology, 6, e1000676. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yang, Y. and Inouye, M. (1991) Intermolecular Complementation between Two Defective Mutant Signal-Transducing Receptors of Escherichia coli. Proceedings of the National Academy of Sciences, 88, 11057-11061. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hsing, W., Russo, F.D., Bernd, K.K. and Silhavy, T.J. (1998) Mutations That Alter the Kinase and Phosphatase Activities of the Two-Component Sensor EnvZ. Journal of Bacteriology, 180, 4538-4546. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, Y. and Inouye, M. (1993) Requirement of Both Kinase and Phosphatase Activities of an Escherichia coli Receptor (Taz1) for Ligand-Dependent Signal Transduction. Journal of Molecular Biology, 231, 335-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kato, A. and Groisman, E.A. (2004) Connecting Two-Component Regulatory Systems by a Protein That Protects a Response Regulator from Dephosphorylation by Its Cognate Sensor. Genes & Development, 18, 2302-2313. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Dutta, R., Qin, L. and Inouye, M. (1999) Histidine Kinases: Diversity of Domain Organization. Molecular Microbiology, 34, 633-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sanowar, S. and Le Moual, H. (2005) Functional Reconstitution of the Salmonella typhimurium PhoQ Histidine Kinase Sensor in Proteoliposomes. Biochemical Journal, 390, 769-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhu, Y. and Inouye, M. (2002) The Role of the G2 Box, a Conserved Motif in the Histidine Kinase Superfamily, in Modulating the Function of EnvZ. Molecular Microbiology, 45, 653-663. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhu, Y., Qin, L., Yoshida, T. and Inouye, M. (2000) Phosphatase Activity of Histidine Kinase EnvZ without Kinase Catalytic Domain. Proceedings of the National Academy of Sciences, 97, 7808-7813. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yeo, W., Zwir, I., Huang, H.V., Shin, D., Kato, A. and Groisman, E.A. (2012) Intrinsic Negative Feedback Governs Activation Surge in Two-Component Regulatory Systems. Molecular Cell, 45, 409-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Liu, W., Li, X., Qi, H., Wu, Y., Qu, J., Yin, Z., et al. (2021) Biphasic Regulation of Transcriptional Surge Generated by the Gene Feedback Loop in a Two-Component System. Bioinformatics, 37, 2682-2690. [Google Scholar] [CrossRef] [PubMed]
|