AggreWell板培养乳腺癌肿瘤球及苦参碱对侵袭迁移蛋白分泌的影响
AggreWell Plate Culture of Breast Cancer Tumor Spheroids and the Impact of Matrine on the Secretion of Proteins Associated with Invasion and Migration
DOI: 10.12677/hjmce.2026.141001, PDF, HTML, XML,    科研立项经费支持
作者: 王 晗*:杭州医学院公共卫生学院,浙江 杭州;黄逸伦:温州医科大学阿尔伯塔学院,浙江 温州;张文元:杭州医学院检验医学院、生物工程学院,浙江 杭州;朱 莲#:杭州医学院基础医学与法医学院,浙江 杭州
关键词: AggreWellTM800板3D乳腺癌肿瘤球苦参碱基质金属蛋白酶上皮间质转化AggreWellTM800 Plate 3D Breast Cancer Tumor Spheroid Matrine Matrix Metalloproteinases Epithelial-Mesenchymal Transition
摘要: 目的:探讨通过AggreWellTM800板培养MDA-MB-231细胞,构建3D乳腺癌肿瘤球,并用于苦参碱影响乳腺癌MDA-MB-231细胞侵袭迁移蛋白分泌的可行性。方法:AggreWellTM800 24孔板经处理后种植MDA-MB-231细胞,培养三维乳腺癌肿瘤球。采用ELISA法测定不同剂量苦参碱影响乳腺癌MDA-MB-231细胞3D肿瘤球培养上清中基质金属蛋白酶(MMP-2、MMP-9)和上皮间质转化(EMT)标记物E-cadherin、N-cadherin、Vimentin的表达情况。并与传统2D单层培养条件下进行比较。结果:苦参碱可有效抑制MDA-MB-231细胞2D/3D培养上清液中MMP-2、MMP-9的表达,以及有效抑制EMT,表现为下调N-cadherin、Vimentin表达,上调E-cadherin表达。随着苦参碱浓度的增加,抑制增加,呈剂量依赖性。且对3D培养的抑制显著低于对2D培养的抑制。结论:本研究表明,AggreWell构建的3D模型可能比传统2D模型更能反映乳腺癌细胞对苦参碱的耐受性,提示其在临床前药物筛选中可能具有潜在优势。
Abstract: Objective: To investigate the feasibility of generating three-dimensional (3D) breast cancer tumor spheroids using MDA-MB-231 cells cultured in AggreWellTM800 plates, and to evaluate the effects of matrine on the secretion of invasion- and migration-related proteins in these cells. Methods: MDA-MB-231 cells were seeded into 24-well AggreWellTM800 plates to generate three-dimensional breast cancer tumor spheroids. The expression levels of matrix metalloproteinases (MMP-2 and MMP-9) and Epithelial-Mesenchymal Transition (EMT) markers, including E-cadherin, N-cadherin, and Vimentin, were quantified via ELISA in the supernatant of the 3D tumor spheroid cultures under varying concentrations of matrine. These results were subsequently compared with those obtained under conventional two-dimensional monolayer culture conditions. Results: Matrine significantly suppressed the expression of MMP-2 and MMP-9 in both 2D and 3D culture systems in a dose-dependent manner. Furthermore, matrine inhibited EMT, as evidenced by the downregulation of N-cadherin and Vimentin protein expression and the upregulation of E-cadherin. However, the inhibitory effects observed in the 3D culture model were markedly less pronounced than those in the 2D model. Conclusion: This study demonstrates that the 3D cell model generated using AggreWell more accurately reflects the tolerance of breast cancer cells to matrine compared to the conventional 2D model, indicating its potential advantages in preclinical drug screening applications.
文章引用:王晗, 黄逸伦, 张文元, 朱莲. AggreWell板培养乳腺癌肿瘤球及苦参碱对侵袭迁移蛋白分泌的影响[J]. 药物化学, 2026, 14(1): 1-7. https://doi.org/10.12677/hjmce.2026.141001

1. 引言

乳腺癌是女性中最常见的恶性肿瘤[1],是癌症相关死亡和疾病的主要原因。由于乳腺癌细胞的高度异质性,传统的体外研究模型仍然存在很大的局限性。因此,了解其复杂的生物学性质,以及开发先进的治疗策略都需要大量研究,以有助于检查肿瘤生长、药物反应和治疗效果,包括使用实验模型[2],以及有助于提高药物筛选与开发的预测性与准确性。苦参碱(Matrine)是一种从中药苦参中提取的有效成分,是一种生物碱,对癌症患者有多种保护作用[3]。已被证明对不同类型的癌症具有独特的抗肿瘤作用活性[4],可抑制癌细胞增殖,诱导癌细胞凋亡和自噬[5]。在药理学上,苦参碱的抗肿瘤活性已被广泛研究[6]。有研究表明苦参碱可抑制Wnt/β-cat通路的刺激,通过触发铁凋亡和抑制上皮间质转化(EMT),对三阴性乳腺癌(TNBC)具有抗转移作用[7]。本实验通过AggreWellTM800 24孔板培养MDA-MB-231细胞,构建3D乳腺癌肿瘤球。并进行苦参碱对乳腺癌MDA-MB-231肿瘤球的作用实验,ELISA法检测培养上清中基质金属蛋白酶和上皮间质转化标记物的表达。

2. 材料与方法

2.1. 药品与试剂

乳腺癌MDA-MB-231细胞(赛百慷);苦参碱(麦克林),用完全培养基稀释为使用浓度。L15培养基(Hyclone),胎牛血清(Gibco),AggreWellTM800 24孔板(STEMCELL Technologies)。MMP-2、MMP-9、E-cadherin、N-cadherin、Vimentin五种ELISA试剂盒(晶美生物)。防粘连润洗液Anti-Adherence Rinsing Solution (STEMCELL Technologies)。倒置相差显微镜(IX73, Olympus),CO2培养箱(Thermo BB150),多功能酶标仪(上海普丹)。

2.2. 细胞培养与细胞悬液制备

乳腺癌MDA-MB-231细胞使用L15完全培养基(含10%FBS、1%青链霉素)于37℃、5% CO2培养箱中常规培养,以0.25%胰蛋白酶消化、传代。收集对数期生长的MDA-MB-231细胞,配制成1 × 105 cells·mL1细胞悬液。

2.3. 2D实验

取“2.2.”项制备的1 × 105 cells·mL1 MDA-MB-231细胞悬液,加入普通24孔培养板,1.2 ml/孔,培养24 h,吸弃培养基。分别加入不同浓度苦参碱(0, 120, 240, 480 μg·mL1),1.2 ml/孔,继续培养48 h,吸取培养上清液作为检测用。

2.4. 3D实验

AggreWellTM800 24孔板使用前在超净工作台紫外线照射30 min。向AggreWell™800 24板加入1 mL/孔的防粘连润洗液,室温,2000 × g,离心5 min。用移液器尖头小心吸出液体,吸弃干净。取“2.2.”项制备的1 × 105 cells·mL1 MDA-MB-231细胞悬液,加入上述处理的AggreWellTM800 24孔培养板中,1.2 ml/孔。100 × g,离心3 min,将培养板小心地放入37℃、5% CO2的培养箱中。24 h后吸弃培养基。然后分别加入不同浓度(0, 120, 240, 480 μg·mL1)的苦参碱,1.2 ml/孔。继续培养48 h,吸取培养上清液作为检测用。

2.5. ELISA检测2D/3D培养上清液中迁移侵袭蛋白浓度

收集“2.3.”、“2.4.”项的培养上清液,3000 r·min1离心15 min,吸取上清液。按照ELISA试剂盒说明书操作,检测基质金属蛋白酶(MMP-2、MMP-9),以及上皮间质转化标记物(E-cadherin、N-cadherin、Vimentin)五种蛋白浓度。

2.6. 统计分析

使用GraphPad Prism 9进行统计学分析处理。数据资料以 x ¯ ±s 表示,两组间比较采用两独立样本配对t检验。

结果

乳腺癌细胞培养观察

乳腺癌MDA-MB-231细胞普通24孔培养板培养24 h后,生长旺盛,见图1(a)。乳腺癌MDA-MB-231细胞接种于AggreWellTM800 24孔板培养24 h后,可于微孔中形成肿瘤球,见图1(b)

3.2. 苦参碱对乳腺癌细胞培养上清液基质金属蛋白酶分泌的影响

ELISA检测结果显示,苦参碱作用48小时后,于2D/3D条件下,各浓度组均可导致乳腺癌MDA-MB-231细胞分泌MMP-2和MMP-9显著下降,对3D培养的抑制显著低于对2D培养的抑制。均呈剂量依赖性。且3D培养时基质金属蛋白酶分泌的下降速度明显慢于2D培养。结果见表1

(a) (b)

Figure 1. Inverted microscope observation of breast cancer MDA-MB-231 cells cultured for 24 hours. (a) Cells cultured in a common 24-well plate exhibit robust growth. (b) The AggreWellTM800 24-well plate enables the formation of cellular spheroids within microwells during culture

1. 乳腺癌MDA-MB-231细胞培养24 h后的倒置显微镜观察。(a) 普通24孔培养板培养观察,细胞生长旺盛。(b) AggreWellTM800 24孔板培养,可于微孔中形成肿瘤球

Table 1. The effect of Matrine on the secretion of MMP-2 and MMP-9 in the supernatants of 2D and 3D cultured breast cancer MDA-MB-231 cells ( x ¯ ±s , n = 5)

1. 苦参碱对乳腺癌MDA-MB-231细胞2D/3D培养上清液MMP-2、MMP-9分泌的影响( x ¯ ±s , n = 5)

苦参碱剂量/μg·mL1

MMP-2/ng·m1

MMP-9/ng·mL1

2D

3D

2D

3D

0 (对照组)

133.68 ± 10.29

139.32 ± 11.55

375.45 ± 31.16

386.37 ± 33.05

120

115.03 ± 9.851)

127.55 ± 10.364)

330.89 ± 29.211)

359.49 ± 30.86

240

93.24 ± 6.983)

117.63 ± 10.202)6)

266.74 ± 22.853)

321.76 ± 26.832)5)

480

76.84 ± 6.323)

106.26 ± 8.133)6)

217.83 ± 17.593)

282.03 ± 23.773)6)

与对照组相比,1)P < 0.05,2)P < 0.01,3)P < 0.001;与2D培养相比,4)P < 0.05,5)P < 0.01,6)P < 0.001。

3.3. 苦参碱对乳腺癌细胞培养上清液上皮间质转化标记物分泌的影响

ELISA检测结果显示,苦参碱作用48小时后,于2D/3D条件下,均可导致乳腺癌MDA-MB-231细胞分泌N-cadherin、Vimentin的显著下降,以及E-cadherin分泌增加,呈剂量依赖性。且3D培养时分泌N-cadherin、Vimentin的下降速度明显慢于2D培养,而分泌E-cadherin的增加速度慢于2D培养。表明于2D/3D培养条件下,苦参碱有效抑制MDA-MB-231细胞上皮间质转化,且对3D培养时的抑制显著低于对2D培养的抑制。结果见表2

Table 2. The effect of Matrine on the secretion of EMT-related proteins in the supernatants of 2D and 3D cultured breast cancer MDA-MB-231 cells ( x ¯ ±s , n = 5)

2. 苦参碱对乳腺癌MDA-MB-231细胞2D/3D培养上清液EMT相关蛋白分泌的影响( x ¯ ±s , n = 5)

苦参碱剂量/μg·mL1

E-cadherin/ng·mL1

N-cadherin/ng·mL1

Vimentin/ng·mL1

2D

3D

2D

3D

2D

3D

0 (对照组)

179.46 ± 15.33

172.23 ± 14.76

20.31 ± 1.77

22.10 ± 1.89

2.19 ± 0.18

2.25 ± 0.19

120

196.69 ± 17.641)

185.10 ± 16.68

17.93 ± 1.541)

20.34 ± 1.814)

1.88 ± 0.141)

2.16 ± 0.194)

240

215.97 ± 17.782)

197.52 ± 17.301)

15.77 ± 1.292)

19.42 ± 1.661)5)

1.67 ± 0.153)

2.08 ± 0.171)5)

480

239.75 ± 20.493)

206.33 ± 18.452)4)

14.08 ± 1.233)

18.68 ± 1.502)6)

1.43 ± 0.123)

1.95 ± 0.152)6)

与对照组相比,1)P < 0.05,2)P < 0.01,3)P < 0.001;与2D培养相比,4)P < 0.05,5)P < 0.01,6)P < 0.001。

4. 讨论

由于复发和转移,乳腺癌仍然是妇女死亡的主要原因。体外3D肿瘤模型被认为是药物筛选和了解癌症驱动机制的可靠工具,因为它可以模拟肿瘤的异质性[8]。最近肿瘤学研究取得较好的进展,但肿瘤异质性仍然是乳腺癌研究的主要挑战。2D细胞培养方法在乳腺癌研究中的使用虽然有助于获得初步见解,但最终存在缺陷,因为它们不能充分复制肿瘤微环境,无法对体内乳腺癌的异质性进行建模[9]。为了更好地了解肿瘤转移,一个可靠的3D体外模型是必不可少的。因为传统的2D培养往往会扭曲细胞的真实行为,对乳腺癌转移的研究受到限制。而3D肿瘤球能更好地模拟体内肿瘤的微环境,可用来评估药物对肿瘤球活力、大小和凋亡的影响。通常情况下,3D肿瘤球对药物的敏感性低于2D细胞,这更真实地反映了临床的耐药情况。在药物开发的临床前阶段,3D肿瘤球模型比2D模型具有更高的预测价值,可提供更为真实的可靠数据,它弥合了2D培养和体内动物模型研究之间的差距[10]。并且在许多情况下,可以进一步取代体内验证的要求[8]

AggreWell是一种通过微模具板进行3D细胞聚集体培养的系统,具有均一性、可重复性、高效率、高通量、可控性、简便高效等特性[11]。它克服了传统体外培养方法的诸多局限性,能够更可靠、更高效地模拟实体瘤的复杂特性,可用于肿瘤球建模,以及癌症生物学、药物渗透性、放疗抵抗性等研究[12] [13]。AggreWell技术可提供一种标准化、高通量且可控的方法来生成3D肿瘤球,极大地推动了体外肿瘤模型的发展[14]。AggreWell板培养的肿瘤球内部,会自然形成类似于实体瘤的生理梯度。包括外层为增殖活跃的细胞,中间层为静止状态的细胞,核心由于氧气和营养物质的缺乏,出现凋亡或坏死的细胞。这种结构是2D培养无法实现的,对于研究肿瘤代谢和生存机制至关重要。它为肿瘤研究领域带来了革命性的便利和标准化,填补了2D细胞培养与复杂的体内动物模型之间的鸿沟,将在药物开发、机制研究和个性化医疗等领域发挥越来越重要的作用[15]。可使研究人员能够在更接近真实肿瘤的生理环境下,系统地研究癌症基础生物学,药物的渗透与递送效率,以及新药的疗效与筛选。

苦参碱是中草药植物苦参的主要活性成分,具有广谱的抗肿瘤活性[16],可显著抑制癌细胞增殖、侵袭、迁移,促进癌细胞凋亡和自噬[5] [17],逆转多药耐药性。苦参碱的抗癌作用不是通过单一途径,而是多靶点、多通路协同实现的。主要包括:它可抑制肿瘤细胞增殖,干扰肿瘤细胞的细胞周期,使其停滞在G1期或S期,从而阻止细胞分裂和增殖。以及诱导肿瘤细胞凋亡,激活细胞内的“死亡程序”,上调促凋亡蛋白(如Bax),抑制抗凋亡蛋白(如Bcl-2),导致癌细胞自我毁灭。且可抑制肿瘤细胞侵袭和转移,抑制上皮间质转化(EMT),表现为N-cadherin、Vimentin表达下调,E-cadherin表达上调[19],这是癌细胞获得迁移能力的关键步骤。另外可下调基质金属蛋白酶(MMPs)的表达,如MMP-2和MMP-9表达下调[3] [5],从而抑制癌细胞对周围组织的降解和侵袭。有研究表明苦参碱通过LINC01116/miR-9-5p/ITGB1通路抑制乳腺癌细胞增殖和EMT [18],通过NF-κB通路下调MMP-2/9,抑制去势抵抗性前列腺癌的迁移和侵袭[3]。因此,苦参碱可能是辅助抗乳腺癌治疗的一个有希望的靶点[17]。除了上述特性外,苦参碱还可抑制肿瘤血管生成、逆转多药耐药性、免疫调节作用,以及多靶点作用。苦参碱来源于天然,副作用相对较小,兼具抗癌与辅助支持作用。但其目前主要作为辅助治疗药物,而非一线抗癌主力药物。苦参碱相对于强效的化疗药和靶向药,直接抗癌作用强度通常较弱,因此难以单独用于晚期肿瘤的根治。

5. 结论

本研究表明,AggreWell构建的3D模型可能比传统2D模型更能反映乳腺癌细胞对苦参碱的耐受性,提示其在临床前药物筛选中可能具有潜在优势。

基金项目

浙江省中医药科技计划项目(2023ZL358);浙江省高校基本科研经费专项资助(KYYB202103)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Huang, S., Mei, Z., Wan, A., Zhao, M. and Qi, X. (2024) Application and Prospect of Organoid Technology in Breast Cancer. Frontiers in Immunology, 15, Article ID: 1413858. [Google Scholar] [CrossRef] [PubMed]
[2] Das, S., Sahoo, S., Pattanaik, S., Prusty, R.K., Barik, B., Satapathy, B.S., et al. (2025) Advancing Breast Cancer Research: A Comprehensive Review of in Vitro and in Vivo Experimental Models. Medical Oncology, 42, Article No. 316. [Google Scholar] [CrossRef] [PubMed]
[3] Huang, H., Du, T., Xu, G., Lai, Y., Fan, X., Chen, X., et al. (2017) Matrine Suppresses Invasion of Castration-Resistant Prostate Cancer Cells by Downregulating MMP-2/9 via NF-κB Signaling Pathway. International Journal of Oncology, 50, 640-648. [Google Scholar] [CrossRef] [PubMed]
[4] Huang, Z., Li, H., Li, Q., Chen, X., Liu, R. and Chang, X. (2023) Matrine Suppresses Liver Cancer Progression and the Warburg Effect by Regulating the CircROBO1/miR-130a-5p/ROBO1 Axis. Journal of Biochemical and Molecular Toxicology, 37, e23436. [Google Scholar] [CrossRef] [PubMed]
[5] Huang, M. and Xin, W. (2018) Matrine Inhibiting Pancreatic Cells Epithelial-Mesenchymal Transition and Invasion through ROS/NF-κB/MMPS Pathway. Life Sciences, 192, 55-61. [Google Scholar] [CrossRef] [PubMed]
[6] Zhao, K., Cai, Y., Raza, F., Zafar, H., Pan, L., Zheng, X., et al. (2024) Matrine-Loaded Nano-Liposome Induces Apoptosis in Human Esophageal-Squamous Carcinoma KYSE-150 Cells. Current Pharmaceutical Design, 30, 2303-2312. [Google Scholar] [CrossRef] [PubMed]
[7] Sang, Y., Hu, Y., Liang, R., Zhang, Y., Du, H., Zhang, H., et al. (2025) Matrine Targets β-Catenin and Blocks the Formation of β-Catenin/TCF7L2 Complex to Promote Ferroptosis and Inhibit Metastasis in Triple-Negative Breast Cancer. Phytomedicine, 145, Article 157044. [Google Scholar] [CrossRef] [PubMed]
[8] Pierantoni, L., Brancato, V., Costa, J.B., Kundu, S.C., Reis, R.L., Silva-Correia, J., et al. (2025) Synergistic Effect of Co-Culturing Breast Cancer Cells and Fibroblasts in the Formation of Tumoroid Clusters and Design of in Vitro 3D Models for the Testing of Anticancer Agents. Advanced Biology, 7, e2200141. [Google Scholar] [CrossRef] [PubMed]
[9] Ebrahimi, N., Nasr Esfahani, A., Samizade, S., Mansouri, A., Ghanaatian, M., Adelian, S., et al. (2022) The Potential Application of Organoids in Breast Cancer Research and Treatment. Human Genetics, 141, 193-208. [Google Scholar] [CrossRef] [PubMed]
[10] Janani, G., Pillai, M.M., Selvakumar, R., Bhattacharyya, A. and Sabarinath, C. (2017) An in Vitro 3D Model Using Collagen Coated Gelatin Nanofibers for Studying Breast Cancer Metastasis. Biofabrication, 9, Article 015016. [Google Scholar] [CrossRef] [PubMed]
[11] Kibschull, M. (2017) Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies in Aggrewell Plates. Cold Spring Harbor Protocols, 2017, pdb.prot094169. [Google Scholar] [CrossRef] [PubMed]
[12] Razian, G., Yu, Y. and Ungrin, M. (2013) Production of Large Numbers of Size-Controlled Tumor Spheroids Using Microwell Plates. Journal of Visualized Experiments, 81, e50665. [Google Scholar] [CrossRef
[13] Mitsunaga, S., Shioda, K., Hanna, J.H., Isselbacher, K.J. and Shioda, T. (2021) Production and Analysis of Human Primordial Germ Cell-Like Cells. In: Bagrodia, A. and Amatruda, J.F., Eds., Methods in Molecular Biology, Springer, 125-145. [Google Scholar] [CrossRef] [PubMed]
[14] Lopez-Cavestany, M., Wright, O.A., Reckhorn, N.T., Carter, A.T., Jayawardana, K., Nguyen, T., et al. (2024) Superhydrophobic Array Devices for the Enhanced Formation of 3D Cancer Models. ACS Nano, 18, 23637-23654. [Google Scholar] [CrossRef] [PubMed]
[15] Taroncher, M., Gonzalez-Suarez, A.M., Gwon, K., Romero, S., Reyes-Figueroa, A.D., Rodríguez-Carrasco, Y., et al. (2024) Using Microfluidic Hepatic Spheroid Cultures to Assess Liver Toxicity of T-2 Mycotoxin. Cells, 13, Article 900. [Google Scholar] [CrossRef] [PubMed]
[16] Du, Q., Lin, Y., Ding, C., Wu, L., Xu, Y. and Feng, Q. (2023) Pharmacological Activity of Matrine in Inhibiting Colon Cancer Cells VM Formation, Proliferation, and Invasion by Downregulating Claudin-9 Mediated EMT Process and MAPK Signaling Pathway. Drug Design, Development and Therapy, 17, 2787-2804. [Google Scholar] [CrossRef] [PubMed]
[17] Ren, L., Fang, Z., Xu, J., Wu, X., Zhang, Y., Cai, H., et al. (2025) Matrine Inhibits Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition through Regulating the LINC01116/miR-9-5p/ITGB1 Axis. Balkan Medical Journal, 42, 54-65. [Google Scholar] [CrossRef] [PubMed]
[18] Wang, Y., Liao, Q., Dong, Y., Shu, Y., Li, X., Li, J., et al. (2025) Compound Kushen Injection Inhibits Breast Cancer Lung Metastasis through Regulating MTSS1/ARPC3/F-Actin. Journal of Ethnopharmacology, 350, Article 120054. [Google Scholar] [CrossRef] [PubMed]