|
[1]
|
Chen, J., He, L., Ni, Y., Yu, F., Zhang, A., Wang, X., et al. (2024) Prevalence and Associated Risk Factors of Prostate Cancer among a Large Chinese Population. Scientific Reports, 14, Article No. 26338. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, W., Zheng, R., Zeng, H. and Zhang, S. (2016) The Incidence and Mortality of Major Cancers in China, 2012. Chinese Journal of Cancer, 35, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gelmann, E.P. (2002) Molecular Biology of the Androgen Receptor. Journal of Clinical Oncology, 20, 3001-3015. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Harris, W.P., Mostaghel, E.A., Nelson, P.S. and Montgomery, B. (2009) Androgen Deprivation Therapy: Progress in Understanding Mechanisms of Resistance and Optimizing Androgen Depletion. Nature Clinical Practice Urology, 6, 76-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Heinlein, C.A. and Chang, C. (2004) Androgen Receptor in Prostate Cancer. Endocrine Reviews, 25, 276-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Backe, S.J., Sager, R.A., Regan, B.R., Sit, J., Major, L.A., Bratslavsky, G., et al. (2022) A Specialized Hsp90 Co-Chaperone Network Regulates Steroid Hormone Receptor Response to Ligand. Cell Reports, 40, Article ID: 111039. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Heid, S.E., Pollenz, R.S. and Swanson, H.I. (2000) Role of Heat Shock Protein 90 Dissociation in Mediating Agonist-Induced Activation of the Aryl Hydrocarbon Receptor. Molecular Pharmacology, 57, 82-92. [Google Scholar] [CrossRef]
|
|
[9]
|
Kim, J. and Coetzee, G.A. (2004) Prostate Specific Antigen Gene Regulation by Androgen Receptor. Journal of Cellular Biochemistry, 93, 233-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Guo, J., Wei, Z., Jia, T., Wang, L., Nama, N., Liang, J., et al. (2023) Dissecting Transcription of the 8q24-MYC Locus in Prostate Cancer Recognizes the Equilibration between Androgen Receptor Direct and Indirect Dual-Functions. Journal of Translational Medicine, 21, Article No. 716. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Saporita, A.J., Zhang, Q., Navai, N., Dincer, Z., Hahn, J., Cai, X., et al. (2003) Identification and Characterization of a Ligand-Regulated Nuclear Export Signal in Androgen Receptor. Journal of Biological Chemistry, 278, 41998-42005. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kang, Z., Pirskanen, A., Jänne, O.A. and Palvimo, J.J. (2002) Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex. Journal of Biological Chemistry, 277, 48366-48371. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fenner, A. (2017) AR Homodimerization Is Essential to Function. Nature Reviews Urology, 14, 258-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pomerantz, M.M., Li, F., Takeda, D.Y., Lenci, R., Chonkar, A., Chabot, M., et al. (2015) The Androgen Receptor Cistrome Is Extensively Reprogrammed in Human Prostate Tumorigenesis. Nature Genetics, 47, 1346-1351. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 86, 148-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Smith, M.R., Kabbinavar, F., Saad, F., Hussain, A., Gittelman, M.C., Bilhartz, D.L., et al. (2005) Natural History of Rising Serum Prostate-Specific Antigen in Men with Castrate Nonmetastatic Prostate Cancer. Journal of Clinical Oncology, 23, 2918-2925. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tagawa, S.T., Antonarakis, E.S., Gjyrezi, A., Galletti, G., Kim, S., Worroll, D., et al. (2019) Expression of AR-V7 and Arv567es in Circulating Tumor Cells Correlates with Outcomes to Taxane Therapy in Men with Metastatic Prostate Cancer Treated in Taxynergy. Clinical Cancer Research, 25, 1880-1888. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Roggero, C.M., Jin, L., Cao, S., Sonavane, R., Kopplin, N.G., Ta, H.Q., et al. (2020) A Detailed Characterization of Stepwise Activation of the Androgen Receptor Variant 7 in Prostate Cancer Cells. Oncogene, 40, 1106-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, B., Liu, C., Yang, Z., Zhang, S., Hu, X., Li, B., et al. (2023) Discovery of bwa-522, a First-in-Class and Orally Bioavailable PROTAC Degrader of the Androgen Receptor Targeting N-Terminal Domain for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 66, 11158-11186. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, H., Ban, F., Dalal, K., Leblanc, E., Frewin, K., Ma, D., et al. (2014) Discovery of Small-Molecule Inhibitors Selectively Targeting the DNA-Binding Domain of the Human Androgen Receptor. Journal of Medicinal Chemistry, 57, 6458-6467. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kafka, M., Mayr, F., Temml, V., Möller, G., Adamski, J., Höfer, J., et al. (2020) Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers, 12, Article No. 2092. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, C., Lou, W., Zhu, Y., Nadiminty, N., Schwartz, C.T., Evans, C.P., et al. (2014) Niclosamide Inhibits Androgen Receptor Variants Expression and Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 20, 3198-3210. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sakellakis, M. (2023) Niclosamide in Prostate Cancer: An Inhibitor of AR-V7, a Mitochondrial Uncoupler, or More? Cancer Treatment and Research Communications, 35, Article ID: 100685. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Neklesa, T., Snyder, L.B., Willard, R.R., Vitale, N., Pizzano, J., Gordon, D.A., et al. (2019) ARV-110: An Oral Androgen Receptor PROTAC Degrader for Prostate Cancer. Journal of Clinical Oncology, 37, 259-259. [Google Scholar] [CrossRef]
|
|
[25]
|
Youssef, M.E., Cavalu, S., Hasan, A.M., Yahya, G., Abd-Eldayem, M.A. and Saber, S. (2023) Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. International Journal of Molecular Sciences, 24, Article No. 5014. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jagtap, P.K.A., Asami, S., Sippel, C., Kaila, V.R.I., Hausch, F. and Sattler, M. (2019) Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angewandte Chemie International Edition, 58, 9429-9433. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Buffa, V., Knaup, F.H., Heymann, T., Springer, M., Schmidt, M.V. and Hausch, F. (2023) Analysis of the Selective Antagonist Safit2 as a Chemical Probe for the Fk506-Binding Protein 51. ACS Pharmacology & Translational Science, 6, 361-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Antonarakis, E.S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J.C., et al. (2014) AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. New England Journal of Medicine, 371, 1028-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hunter, I., Jamieson, C. and McEwan, I.J. (2025) The Androgen Receptor Amino-Terminal Domain: Structure, Function and Therapeutic Potential. Endocrine Oncology, 5, e240061. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Raychaudhuri, R., Lin, D.W. and Montgomery, R.B. (2025) Prostate Cancer: A Review. JAMA, 333, 1433-1446. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Soria, J., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K.H., et al. (2018) Osimertinib in Untreated egfr-Mutated Advanced Non-Small-Cell Lung Cancer. New England Journal of Medicine, 378, 113-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hong, D.S., Fakih, M.G., Strickler, J.H., Desai, J., Durm, G.A., Shapiro, G.I., et al. (2020) KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. New England Journal of Medicine, 383, 1207-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zammit, C.M., Nadel, C.M., Lin, Y., et al. (2025) Covalent Destabilizing Degrader of AR and AR-V7 in Andro-Gen-Independent Prostate Cancer Cells.
|
|
[34]
|
Hameed, M.S., Cao, H., Guo, L., Zeng, L. and Ren, Y. (2024) Advancements, Challenges, and Future Frontiers in Covalent Inhibitors and Covalent Drugs: A Review. European Journal of Medicinal Chemistry Reports, 12, Article ID: 100217. [Google Scholar] [CrossRef]
|
|
[35]
|
Santi, N., Piccirilli, A., Corsini, F., Taracila, M.A., Perilli, M., Bonomo, R.A., et al. (2025) Discovery of Boronic Acids-Based Β-Lactamase Inhibitors through in Situ Click Chemistry. International Journal of Molecular Sciences, 26, Article No. 4182. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Andersen, R.J., Mawji, N.R., Wang, J., Wang, G., Haile, S., Myung, J., et al. (2010) Regression of Castrate-Recurrent Prostate Cancer by a Small-Molecule Inhibitor of the Amino-Terminus Domain of the Androgen Receptor. Cancer Cell, 17, 535-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
De Mol, E., Fenwick, R.B., Phang, C.T.W., Buzón, V., Szulc, E., de la Fuente, A., et al. (2016) EPI-001, a Compound Active against Castration-Resistant Prostate Cancer, Targets Transactivation Unit 5 of the Androgen Receptor. ACS Chemical Biology, 11, 2499-2505. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Basu, S., Martínez-Cristóbal, P., Frigolé-Vivas, M., Pesarrodona, M., Lewis, M., Szulc, E., et al. (2023) Rational Optimization of a Transcription Factor Activation Domain Inhibitor. Nature Structural & Molecular Biology, 30, 1958-1969. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Antonarakis, E.S., Chandhasin, C., Osbourne, E., Luo, J., Sadar, M.D. and Perabo, F. (2016) Targeting the N-Terminal Domain of the Androgen Receptor: A New Approach for the Treatment of Advanced Prostate Cancer. The Oncologist, 21, 1427-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Brand, L.J., Olson, M.E., Ravindranathan, P., Guo, H., Kempema, A.M., Andrews, T.E., et al. (2015) EPI-001 Is a Selective Peroxisome Proliferator-Activated Receptor-Gamma Modulator with Inhibitory Effects on Androgen Receptor Expression and Activity in Prostate Cancer. Oncotarget, 6, 3811-3824. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sadar, M.D. (2020) Discovery of Drugs That Directly Target the Intrinsically Disordered Region of the Androgen Receptor. Expert Opinion on Drug Discovery, 15, 551-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Le Moigne, R., Zhou, H., Mawji, N.R., Banuelos, C.A., Wang, J., Jian, K., et al. (2019) Next Generation N-Terminal Domain Androgen Receptor Inhibitors with Improved Potency and Metabolic Stability in Castration-Resistant Prostate Cancer Models. Journal of Clinical Oncology, 37, Article No. 220. [Google Scholar] [CrossRef]
|
|
[43]
|
Vaishampayan, U., Montgomery, R.B., Gordon, M.S., Smith, D.C., Barber, K., de Haas-Amatsaleh, A., et al. (2017) EPI-506 (Ralaniten Acetate), a Novel Androgen Receptor (AR) N-Terminal Domain (NTD) Inhibitor, in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC): Phase 1 Update on Safety, Tolerability, Pharmacokinetics and Efficacy. Annals of Oncology, 28, v274. [Google Scholar] [CrossRef]
|
|
[44]
|
Chi, K.N., Vaishampayan, U.N., Gordon, M.S., Smith, D.C., Rudsinski, E., De Haas-Amatsaleh, A., et al. (2017) Efficacy, Safety, Tolerability, and Pharmacokinetics of EPI-506 (Ralaniten Acetate), a Novel Androgen Receptor (AR) N-Terminal Domain (NTD) Inhibitor, in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) Progressing after Enzalutamide And/or Abiraterone. Journal of Clinical Oncology, 35, Article No. 5032. [Google Scholar] [CrossRef]
|
|
[45]
|
Katleba, K.D., Ghosh, P.M. and Mudryj, M. (2023) Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines, 11, Article No. 2215. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Le Moigne, R., Pearson, P., Lauriault, V., Hong, N.H., Virsik, P., Zhou, H., et al. (2021) Preclinical and Clinical Pharmacology of EPI-7386, an Androgen Receptor N-Terminal Domain Inhibitor for Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 39, Article No. 119. [Google Scholar] [CrossRef]
|
|
[47]
|
Kyriakopoulos, C., Chatta, G.S., Laccetti, A.L., Iannotti, N., Sokolova, A., Hotte, S.J., et al. (2024) Phase 1/2 Trial of Oral EPI-7386 (Masofaniten) in Combination with Enzalutamide (Enz) Compared to Enz Alone in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC): Phase 1 (P1) Results and Phase 2 (P2) Design. Journal of Clinical Oncology, 42, Article No. 141. [Google Scholar] [CrossRef]
|
|
[48]
|
Vacas, T., Corzana, F., Jiménez-Osés, G., González, C., Gómez, A.M., Bastida, A., et al. (2010) Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. Journal of the American Chemical Society, 132, 12074-12090. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
McEwan, I.J., Lavery, D., Fischer, K. and Watt, K. (2007) Natural Disordered Sequences in the Amino Terminal Domain of Nuclear Receptors: Lessons from the Androgen and Glucocorticoid Receptors. Nuclear Receptor Signaling, 5, e001. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Matsumoto, S., Hiraga, T., Hayashi, Y., Yoshikawa, Y., Tsuda, C., Araki, M., et al. (2018) Molecular Basis for Allosteric Inhibition of GTP-Bound H-Ras Protein by a Small-Molecule Compound Carrying a Naphthalene Ring. Biochemistry, 57, 5350-5358. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lavery, D.N. and McEwan, I.J. (2008) Structural Characterization of the Native NH2-Terminal Transactivation Domain of the Human Androgen Receptor: A Collapsed Disordered Conformation Underlies Structural Plasticity and Protein-Induced Folding. Biochemistry, 47, 3360-3369. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ban, F., Leblanc, E., Cavga, A.D., Huang, C.F., Flory, M.R., Zhang, F., et al. (2021) Development of an Androgen Receptor Inhibitor Targeting the N-Terminal Domain of Androgen Receptor for Treatment of Castration Resistant Prostate Cancer. Cancers, 13, Article No. 3488. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Krygowski, T.M., Palusiak, M., Płonka, A. and Zachara‐Horeglad, J.E. (2007) Relationship between Substituent Effect and Aromaticity Part III: Naphthalene as a Transmitting Moiety for Substituent Effect. Journal of Physical Organic Chemistry, 20, 297-306. [Google Scholar] [CrossRef]
|
|
[54]
|
Paulsen, C.E. and Carroll, K.S. (2013) Cysteine-mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chemical Reviews, 113, 4633-4679. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Levine, R.L., Mosoni, L., Berlett, B.S. and Stadtman, E.R. (1996) Methionine Residues as Endogenous Antioxidants in Proteins. Proceedings of the National Academy of Sciences, 93, 15036-15040. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhang, J., Ali, M.Y., Chong, H.B., Tien, P., Woods, J., Noble, C., et al. (2025) Oxidation of Retromer Complex Controls Mitochondrial Translation. Nature, 641, 1048-1058. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xiao, X., Hu, M., Gao, L., Yuan, H., Chong, B., Liu, Y., et al. (2025) Low-Input Redoxomics Facilitates Global Identification of Metabolic Regulators of Oxidative Stress in the Gut. Signal Transduction and Targeted Therapy, 10, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Petrovic, D., Slade, L., Paikopoulos, Y., D’Andrea, D., Savic, N., Stancic, A., et al. (2025) Ergothioneine Improves Healthspan of Aged Animals by Enhancing cGPDH Activity through CSE-Dependent Persulfidation. Cell Metabolism, 37, 542-556.e14. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Fan, Y., Dan, W., Wang, Y., Ma, Z., Jian, Y., Liu, T., et al. (2025) Itaconate Transporter SLC13A3 Confers Immunotherapy Resistance via Alkylation-Mediated Stabilization of PD-L1. Cell Metabolism, 37, 514-526.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Schilter, D. (2017) Thiol Oxidation: A Slippery Slope. Nature Reviews Chemistry, 1, Article No. 0013. [Google Scholar] [CrossRef]
|
|
[61]
|
Gunnoo, S.B. and Madder, A. (2016) Chemical Protein Modification through Cysteine. ChemBioChem, 17, 529-553. [Google Scholar] [CrossRef] [PubMed]
|