|
[1]
|
Nandi, D., Tahiliani, P., Kumar, A. and Chandu, D. (2006) The Ubiquitin-Proteasome System. Journal of Biosciences, 31, 137-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bond, M.J. and Crews, C.M. (2021) Proteolysis Targeting Chimeras (PROTACs) Come of Age: Entering the Third Decade of Targeted Protein Degradation. RSC Chemical Biology, 2, 725-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hershko, A., Heller, H., Elias, S. and Ciechanover, A. (1983) Components of Ubiquitin-Protein Ligase System. Resolution, Affinity Purification, and Role in Protein Breakdown. Journal of Biological Chemistry, 258, 8206-8214. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wertz, I.E. and Wang, X. (2019) From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chemical Biology, 26, 156-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Michaelides, I.N. and Collie, G.W. (2023) E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. Journal of Medicinal Chemistry, 66, 3173-3194. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jiang, H., Xiong, H., Gu, S. and Wang, M. (2023) E3 Ligase Ligand Optimization of Clinical PROTACs. Frontiers in Chemistry, 11, Article ID: 1098331. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., et al. (2010) Identification of a Primary Target of Thalidomide Teratogenicity. Science, 327, 1345-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhu, Y.X., Braggio, E., Shi, C., Bruins, L.A., Schmidt, J.E., Van Wier, S., et al. (2011) Cereblon Expression Is Required for the Antimyeloma Activity of Lenalidomide and Pomalidomide. Blood, 118, 4771-4779. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Takwale, A.D., Jo, S., Jeon, Y.U., Kim, H.S., Shin, C.H., Lee, H.K., et al. (2020) Design and Characterization of Cereblon-Mediated Androgen Receptor Proteolysis-Targeting Chimeras. European Journal of Medicinal Chemistry, 208, Article 112769. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., et al. (2017) Anticancer Sulfonamides Target Splicing by Inducing RBM39 Degradation via Recruitment to Dcaf15. Science, 356, eaal3755. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, X., Crowley, V.M., Wucherpfennig, T.G., Dix, M.M. and Cravatt, B.F. (2019) Electrophilic PROTACs that Degrade Nuclear Proteins by Engaging Dcaf16. Nature Chemical Biology, 15, 737-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, X., Luukkonen, L.M., Eissler, C.L., Crowley, V.M., Yamashita, Y., Schafroth, M.A., et al. (2021) DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. Journal of the American Chemical Society, 143, 5141-5149. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Buckley, D.L., Gustafson, J.L., Van Molle, I., Roth, A.G., Tae, H.S., Gareiss, P.C., et al. (2012) Small‐Molecule Inhibitors of the Interaction between the E3 Ligase VHL and HIF1α. Angewandte Chemie International Edition, 51, 11463-11467. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zoppi, V., Hughes, S.J., Maniaci, C., Testa, A., Gmaschitz, T., Wieshofer, C., et al. (2019) Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective Von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and Brd7. Journal of Medicinal Chemistry, 62, 699-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lucas, X., Van Molle, I. and Ciulli, A. (2018) Surface Probing by Fragment-Based Screening and Computational Methods Identifies Ligandable Pockets on the Von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. Journal of Medicinal Chemistry, 61, 7387-7393. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Burslem, G.M. and Crews, C.M. (2020) Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, 181, 102-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nowak, R.P., DeAngelo, S.L., Buckley, D., He, Z., Donovan, K.A., An, J., et al. (2018) Plasticity in Binding Confers Selectivity in Ligand-Induced Protein Degradation. Nature Chemical Biology, 14, 706-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hines, J., Jaime-Figueroa, S., et al. (2018) Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chemical Biology, 25, 78-87.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M. and Deshaies, R.J. (2001) PROTACs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 98, 8554-8559. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Flanagan, J.J. and Neklesa, T.K. (2019) Targeting Nuclear Receptors with PROTAC Degraders. Molecular and Cellular Endocrinology, 493, Article 110452. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sakamoto, K.M., Kim, K.B., Verma, R., Ransick, A., Stein, B., Crews, C.M., et al. (2003) Development of PROTACs to Target Cancer-Promoting Proteins for Ubiquitination and Degradation. Molecular & Cellular Proteomics, 2, 1350-1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., et al. (2004) In Vivo Activation of the P53 Pathway by Small-Molecule Antagonists of Mdm2. Science, 303, 844-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lu, J., Qian, Y., Altieri, M., Dong, H., Wang, J., Raina, K., et al. (2015) Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Chemistry & Biology, 22, 755-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
He, S., Ma, J., Fang, Y., Liu, Y., Wu, S., Dong, G., et al. (2021) Homo-PROTAC Mediated Suicide of MDM2 to Treat Non-Small Cell Lung Cancer. Acta Pharmaceutica Sinica B, 11, 1617-1628. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Han, X., Wang, C., Qin, C., Xiang, W., Fernandez-Salas, E., Yang, C., et al. (2019) Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 62, 941-964. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Han, X., Zhao, L., Xiang, W., Qin, C., Miao, B., Xu, T., et al. (2019) Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. Journal of Medicinal Chemistry, 62, 11218-11231. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Burke, M.R., Smith, A.R. and Zheng, G. (2022) Overcoming Cancer Drug Resistance Utilizing PROTAC Technology. Frontiers in Cell and Developmental Biology, 10, Article ID: 872729. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ward, R.A., Fawell, S., Floc’h, N., Flemington, V., McKerrecher, D. and Smith, P.D. (2021) Challenges and Opportunities in Cancer Drug Resistance. Chemical Reviews, 121, 3297-3351. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, W., Li, P., Sun, S., Jia, C., Yang, N., Zhuang, X., et al. (2022) Discovery of Highly Potent and Selective CRBN-Recruiting EGFRL858R/T790M Degraders in Vivo. European Journal of Medicinal Chemistry, 238, Article 114509. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wolf, G., Craigon, C., Teoh, S.T., Essletzbichler, P., Onstein, S., Cassidy, D., et al. (2025) The Efflux Pump ABCC1/MRP1 Constitutively Restricts PROTAC Sensitivity in Cancer Cells. Cell Chemical Biology, 32, 291-306.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, L., Riley-Gillis, B., Vijay, P. and Shen, Y. (2019) Acquired Resistance to Bet-PROTACs (Proteolysis-Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 Ligase Complexes. Molecular Cancer Therapeutics, 18, 1302-1311. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Delmore, J.E., Issa, G.C., Lemieux, M.E., Rahl, P.B., Shi, J., Jacobs, H.M., et al. (2011) BET Bromodomain Inhibition as a Therapeutic Strategy to Target C-Myc. Cell, 146, 904-917. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kortüm, K.M., Mai, E.K., Hanafiah, N.H., Shi, C., Zhu, Y., Bruins, L., et al. (2016) Targeted Sequencing of Refractory Myeloma Reveals a High Incidence of Mutations in CRBN and Ras Pathway Genes. Blood, 128, 1226-1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Barrio, S., Munawar, U., Zhu, Y.X., Giesen, N., Shi, C., Viá, M.D., et al. (2020) IKZF1/3 and CRL4crbn E3 Ubiquitin Ligase Mutations and Resistance to Immunomodulatory Drugs in Multiple Myeloma. Haematologica, 105, e237-e241. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gooding, S., Ansari-Pour, N., Towfic, F., Ortiz Estévez, M., Chamberlain, P.P., Tsai, K., et al. (2021) Multiple Cereblon Genetic Changes Are Associated with Acquired Resistance to Lenalidomide or Pomalidomide in Multiple Myeloma. Blood, 137, 232-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Latif, F., Tory, K., Gnarra, J., Yao, M., Duh, F., Orcutt, M.L., et al. (1993) Identification of the Von Hippel-Lindau Disease Tumor Suppressor Gene. Science, 260, 1317-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hanzl, A., Casement, R., Imrichova, H., Hughes, S.J., Barone, E., Testa, A., et al. (2023) Functional E3 Ligase Hotspots and Resistance Mechanisms to Small-Molecule Degraders. Nature Chemical Biology, 19, 323-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mayor-Ruiz, C., Jaeger, M.G., Bauer, S., Brand, M., Sin, C., Hanzl, A., et al. (2019) Plasticity of the Cullin-Ring Ligase Repertoire Shapes Sensitivity to Ligand-Induced Protein Degradation. Molecular Cell, 75, 849-858.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Aldea, M., Andre, F., Marabelle, A., Dogan, S., Barlesi, F. and Soria, J. (2021) Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discovery, 11, 874-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kobayashi, S., Boggon, T.J., Dayaram, T., Jänne, P.A., Kocher, O., Meyerson, M., et al. (2005) EGFR Mutation and Resistance of Non-Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 352, 786-792. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Nagpure, N.R. and Patel, H.M. (2025) Overcoming Triple Mutant EGFR-Tyrosine Kinase Barriers in the Therapeutics of Non-Small Cell Lung Cancer: A Patent Review on Fourth-Generation Inhibitors (2017-2024). Expert Opinion on Therapeutic Patents, 35, 963-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Huang, X., Zhang, G., Tang, T., Gao, X. and Liang, T. (2022) One Shoot, Three Birds: Targeting NEK2 Orchestrates Chemoradiotherapy, Targeted Therapy, and Immunotherapy in Cancer Treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1877, Article 188696. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huang, Q., Li, Y., Huang, Y., Wu, J., Bao, W., Xue, C., et al. (2025) Advances in Molecular Pathology and Therapy of Non-Small Cell Lung Cancer. Signal Transduction and Targeted Therapy, 10, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, E., Huang, X., Zhang, G. and Liang, T. (2021) Combinational Blockade of MET and PD-L1 Improves Pancreatic Cancer Immunotherapeutic Efficacy. Journal of Experimental & Clinical Cancer Research, 40, Article No. 279. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, X., Lu, Y., Chen, S., Zhu, Z., Fu, Y., Zhang, J., et al. (2024) Discovery of a Prominent Dual-Target DDR1/EGFR Inhibitor Aimed DDR1/EGFR-Positive NSCLC. Bioorganic Chemistry, 149, Article 107500. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
He, J. and Tam, K.Y. (2024) Dual-Target Inhibitors of Cholinesterase and Gsk-3β to Modulate Alzheimer’s Disease. Drug Discovery Today, 29, Article 103914. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ramsay, R.R., Popovic‐Nikolic, M.R., Nikolic, K., Uliassi, E. and Bolognesi, M.L. (2018) A Perspective on Multi‐Target Drug Discovery and Design for Complex Diseases. Clinical and Translational Medicine, 7, e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Santos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G., et al. (2016) A Comprehensive Map of Molecular Drug Targets. Nature Reviews Drug Discovery, 16, 19-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zięba, A., Stępnicki, P., Matosiuk, D. and Kaczor, A.A. (2022) What Are the Challenges with Multi-Targeted Drug Design for Complex Diseases? Expert Opinion on Drug Discovery, 17, 673-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xin, L., Wang, C., Cheng, Y., Wang, H., Guo, X., Deng, X., et al. (2024) Discovery of Novel Erα and Aromatase Dual-Targeting PROTAC Degraders to Overcome Endocrine-Resistant Breast Cancer. Journal of Medicinal Chemistry, 67, 8913-8931. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zheng, M., Huo, J., Gu, X., Wang, Y., Wu, C., Zhang, Q., et al. (2021) Rational Design and Synthesis of Novel Dual PROTACs for Simultaneous Degradation of EGFR and PARP. Journal of Medicinal Chemistry, 64, 7839-7852. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Teng, M., Jiang, J., He, Z., Kwiatkowski, N.P., Donovan, K.A., Mills, C.E., et al. (2020) Development of CDK2 and CDK5 Dual Degrader Tmx‐2172. Angewandte Chemie International Edition, 59, 13865-13870. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, J., Liu, Y., Tang, J., Gong, Q., Yan, G., Fan, H., et al. (2024) Recent Advances in Dual PROTACs Degrader Strategies for Disease Treatment. European Journal of Medicinal Chemistry, 279, Article 116901. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhou, F., Chen, L., Cao, C., Yu, J., Luo, X., Zhou, P., et al. (2020) Development of Selective Mono or Dual PROTAC Degrader Probe of CDK Isoforms. European Journal of Medicinal Chemistry, 187, Article 111952. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Xiao, Y., Hale, S., Awasthee, N., Meng, C., Zhang, X., Liu, Y., et al. (2023) HDAC3 and HDAC8 PROTAC Dual Degrader Reveals Roles of Histone Acetylation in Gene Regulation. Cell Chemical Biology, 30, 1421-1435.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lv, D., Pal, P., Liu, X., Jia, Y., Thummuri, D., Zhang, P., et al. (2021) Development of a BCL-XL and BCL-2 Dual Degrader with Improved Anti-Leukemic Activity. Nature Communications, 12, Article No. 6896. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Huang, Y., Yokoe, H., Kaiho-Soma, A., Takahashi, K., Hirasawa, Y., Morita, H., et al. (2022) Design, Synthesis, and Evaluation of Trivalent PROTACs Having a Functionalization Site with Controlled Orientation. Bioconjugate Chemistry, 33, 142-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Imaide, S., Riching, K.M., Makukhin, N., Vetma, V., Whitworth, C., Hughes, S.J., et al. (2021) Trivalent PROTACs Enhance Protein Degradation via Combined Avidity and Cooperativity. Nature Chemical Biology, 17, 1157-1167. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chen, Y., Xia, Z., Suwal, U., Rappu, P., Heino, J., De Wever, O., et al. (2024) Dual-Ligand PROTACS Mediate Superior Target Protein Degradation in Vitro and Therapeutic Efficacy in Vivo. Chemical Science, 15, 17691-17701. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Li, J., Chen, X., Lu, A. and Liang, C. (2023) Targeted Protein Degradation in Cancers: Orthodox PROTACs and Beyond. The Innovation, 4, Article 100413. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, S., Li, Y., Huang, S., Wu, S., Gao, L., Sun, Q., et al. (2021) Discovery of Potent and Novel Dual PARP/BRD4 Inhibitors for Efficient Treatment of Pancreatic Cancer. Journal of Medicinal Chemistry, 64, 17413-17435. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhang, J., Yang, C., Tang, P., Chen, J., Zhang, D., Li, Y., et al. (2022) Discovery of 4-Hydroxyquinazoline Derivatives as Small Molecular BET/PARP1 Inhibitors That Induce Defective Homologous Recombination and Lead to Synthetic Lethality for Triple-Negative Breast Cancer Therapy. Journal of Medicinal Chemistry, 65, 6803-6825. [Google Scholar] [CrossRef] [PubMed]
|