[1]
|
Westbury, S., Oyebode, O., Van Rens, T., et al. (2023) Obesity Stigma: Causes, Consequences, and Potential Solutions. Current Obesity Reports, 12, 10-23. https://doi.org/10.1007/s13679-023-00495-3
|
[2]
|
Collaboration, N.C.D.R.F. (2016) Trends in Adult Body-Mass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Popula-tion-Based Measurement Studies with 19.2 Million Participants. The Lancet, 387, 1377-1396.
https://doi.org/10.1016/S0140-6736(16)30054-X
|
[3]
|
Chen, K., Shen, Z., Gu, W., et al. (2023) Prevalence of Obesity and Associated Complications in China: A Cross-Sectional, Real-World Study in 15.8 Million Adults. Diabetes, Obesity and Metabolism, 25, 3390-3399.
https://doi.org/10.1111/dom.15238
|
[4]
|
World Obesity Federation. World Obesity Atlas 2023. https://data.worldobesity.org/publications/?cat=19
|
[5]
|
Hill, J.O. (2006) Understanding and Addressing the Epi-demic of Obesity: An Energy Balance Perspective. Endocrine Reviews, 27, 750-761. https://doi.org/10.1210/er.2006-0032
|
[6]
|
Swinburn, B.A., Sacks, G., Hall, K.D., et al. (2011) The Global Obesity Pandemic: Shaped by Global Drivers and Local Environments. The Lancet, 378, 804-814. https://doi.org/10.1016/S0140-6736(11)60813-1
|
[7]
|
Despres, J.P. and Lemieux, I. (2006) Abdominal Obesity and Metabolic Syndrome. Nature, 444, 881-887.
https://doi.org/10.1038/nature05488
|
[8]
|
Xu, Z., Jiang, W., Huang, W., et al. (2022) Gut Microbiota in Patients with Obesity and Metabolic Disorders—A Systematic Review. Genes & Nutrition, 17, Article No. 2. https://doi.org/10.1186/s12263-021-00703-6
|
[9]
|
Jia, X., Chen, Q., Wu, H., et al. (2023) Exploring a Novel Ther-apeutic Strategy: The Interplay between Gut Microbiota and High-Fat Diet in the Pathogenesis of Metabolic Disorders. Frontiers in Nutrition, 10, Article 1291853.
https://doi.org/10.3389/fnut.2023.1291853
|
[10]
|
Ley, R.E., Turnbaugh, P.J., Klein, S., et al. (2006) Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature, 444, 1022-1023. https://doi.org/10.1038/4441022a
|
[11]
|
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al. (2006) An Obesi-ty-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031. https://doi.org/10.1038/nature05414
|
[12]
|
Ibrahim, K.S., Bourwis, N., Dolan, S., et al. (2021) Characterisation of Gut Microbiota of Obesity and Type 2 Diabetes in a Rodent Model. Bioscience of Microbiota, Food and Health, 40, 65-74. https://doi.org/10.12938/bmfh.2019-031
|
[13]
|
Takeuchi, T., Kameyama, K., Miyauchi, E., et al. (2023) Fatty Acid Overproduction by Gut Commensal Microbiota Exacerbates Obesity. Cell Metabolism, 35, 361-375.e9. https://doi.org/10.1016/j.cmet.2022.12.013
|
[14]
|
Cheng, Z., Zhang, L., Yang, L., et al. (2022) The Critical Role of Gut Microbiota in Obesity. Frontiers in Endocrinology (Lausanne), 13, Article 1025706. https://doi.org/10.3389/fendo.2022.1025706
|
[15]
|
Oh, K.K., Gupta, H., Min, B.H., et al. (2022) Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells, 11, Article 2903.
https://doi.org/10.3390/cells11182903
|
[16]
|
Czajkowski, P., Adamska-Patruno, E., Bauer, W., et al. (2020) The Impact of FTO Genetic Variants on Obesity and Its Metabolic Consequences Is Dependent on Daily Macronutrient In-take. Nutrients, 12, Article 3255.
https://doi.org/10.3390/nu12113255
|
[17]
|
Dubern, B., Mosbah, H., Pigeyre, M., et al. (2022) Rare Genetic Causes of Obesity: Diagnosis and Management in Clinical Care. Annales d’Endocrinologie (Paris), 83, 63-72. https://doi.org/10.1016/j.ando.2021.12.003
|
[18]
|
Wu, Y., Duan, H., Tian, X., et al. (2018) Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis. Frontiers in Genetics, 9, Article 179. https://doi.org/10.3389/fgene.2018.00179
|
[19]
|
Huvenne, H., Dubern, B., Clement, K., et al. (2016) Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obesity Facts, 9, 158-173. https://doi.org/10.1159/000445061
|
[20]
|
Heikkinen, A., Bollepalli, S. and Ollikainen, M. (2022) The Potential of DNA Methylation as a Biomarker for Obesity and Smoking. Journal of Internal Medicine, 292, 390-408. https://doi.org/10.1111/joim.13496
|
[21]
|
Chu, D.T., Thi, Y.N. and Chew, N.W.S. (2023) Histone Modifications in Fat Metabolism and Obesity. Progress in Molecular Biology and Translational Science, 197, 135-152. https://doi.org/10.1016/bs.pmbts.2023.01.003
|
[22]
|
Zhang, J.Y., Ren, C.Q., Cao, Y.N., et al. (2023) Role of Mi-croRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. Journal of Agricultural and Food Chemis-try, 71, 14396-14412.
https://doi.org/10.1021/acs.jafc.3c03042
|
[23]
|
Arena, R., Pronk, N.P. and Woodard, C. (2023) Physical Inactivity and Obesity in the United States: At the Intersection of Politics, Socioeconomics, Race, and Culture. Current Problems in Cardiology, 48, Article 102007.
https://doi.org/10.1016/j.cpcardiol.2023.102007
|
[24]
|
Ludwig, D.S. and Ebbeling, C.B. (2018) The Carbohy-drate-Insulin Model of Obesity: Beyond “Calories in, Calories out”. JAMA Internal Medicine, 178, 1098-1103. https://doi.org/10.1001/jamainternmed.2018.2933
|
[25]
|
Swinburn, B., Sacks, G. and Ravussin, E. (2009) Increased Food Energy Supply Is More than Sufficient to Explain the US Epidemic of Obesity. The American Journal of Clinical Nutrition, 90, 1453-1456.
https://doi.org/10.3945/ajcn.2009.28595
|
[26]
|
Poli, V.F.S., Sanches, R.B., Moraes, A.D.S., et al. (2017) The Ex-cessive Caloric Intake and Micronutrient Deficiencies Related to Obesity after a Long-Term Interdisciplinary Therapy. Nutrition, 38, 113-119.
https://doi.org/10.1016/j.nut.2017.01.012
|
[27]
|
Kline, C.E. (2014) The Bidirectional Relationship between Exercise and Sleep: Implications for Exercise Adherence and Sleep Improvement. American Journal of Lifestyle Medicine, 8, 375-379.
https://doi.org/10.1177/1559827614544437
|
[28]
|
Young, A.I., Wauthier, F. and Donnelly, P. (2016) Multiple Nov-el Gene-by-Environment Interactions Modify the Effect of FTO Variants on Body Mass Index. Nature Communications, 7, Article No. 12724.
https://doi.org/10.1038/ncomms12724
|
[29]
|
Dayabandara, M., Hanwella, R., Ratnatunga, S., et al. (2017) Antipsy-chotic-Associated Weight Gain: Management Strategies and Impact on Treatment Adherence. Neuropsychiatric Disease and Treatment, 13, 2231-2241.
https://doi.org/10.2147/NDT.S113099
|
[30]
|
Gammone, M.A., Efthymakis, K. and D’Orazio, N. (2021) Effect of Third-Generation Beta Blockers on Weight Loss in a Population of Overweight-Obese Subjects in a Controlled Dietary Regimen. Journal of Nutrition and Metabolism, 2021, Article ID: 5767306. https://doi.org/10.1155/2021/5767306
|
[31]
|
Amato, A.A., Wheeler, H.B. and Blumberg, B. (2021) Obesity and Endocrine-Disrupting Chemicals. Endocrine Connections, 10, R87-R105. https://doi.org/10.1530/EC-20-0578
|
[32]
|
Nappi, F., Barrea, L., Di Somma, C., et al. (2016) Endocrine Aspects of Environmental “Obesogen” Pollutants. International Journal of Environmental Research and Public Health, 13, Article 765.
https://doi.org/10.3390/ijerph13080765
|
[33]
|
Geng, J., Ni, Q., Sun, W., et al. (2022) The Links between Gut Mi-crobiota and Obesity and Obesity Related Diseases. Biomedicine & Pharmacotherapy, 147, Article 112678. https://doi.org/10.1016/j.biopha.2022.112678
|
[34]
|
Mocanu, V., Zhang, Z., Deehan, E.C., et al. (2021) Fecal Mi-crobial Transplantation and Fiber Supplementation in Patients with Severe Obesity and Metabolic Syndrome: A Ran-domized Double-Blind, Placebo-Controlled Phase 2 Trial. Nature Medicine, 27, 1272-1279. https://doi.org/10.1038/s41591-021-01399-2
|
[35]
|
Sun, L., Ma, L., Ma, Y., et al. (2018) Insights into the Role of Gut Microbiota in Obesity: Pathogenesis, Mechanisms, and Therapeutic Perspectives. Protein & Cell, 9, 397-403. https://doi.org/10.1007/s13238-018-0546-3
|
[36]
|
Milani, C., Duranti, S., Bottacini, F., et al. (2017) The First Mi-crobial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 81. https://doi.org/10.1128/MMBR.00036-17
|
[37]
|
Shi, X., Ma, T., Sakandar, H.A., et al. (2022) Gut Microbiome and Aging Nexus and Underlying Mechanism. Applied Microbiology and Biotechnology, 106, 5349-5358. https://doi.org/10.1007/s00253-022-12089-5
|
[38]
|
Martel, J., Chang, S.H., Ko, Y.F., et al. (2022) Gut Barrier Disruption and Chronic Disease. Trends in Endocrinology & Metabolism, 33, 247-265. https://doi.org/10.1016/j.tem.2022.01.002
|
[39]
|
Gomes, A.C., Hoffmann, C. and Mota, J.F. (2018) The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes, 9, 308-325. https://doi.org/10.1080/19490976.2018.1465157
|
[40]
|
De Vos, W.M., Tilg, H., Van Hul, M., et al. (2022) Gut Mi-crobiome and Health: Mechanistic Insights. Gut, 71, 1020-1032. https://doi.org/10.1136/gutjnl-2021-326789
|
[41]
|
Rodriguez, C., Romero, E., Garrido-Sanchez, L., et al. (2020) Microbiota Insights in Clostridium Difficile Infection and Inflammatory Bowel Disease. Gut Microbes, 12, Article 1725220.
https://doi.org/10.1080/19490976.2020.1725220
|
[42]
|
Li, Q., Wang, C., Tang, C., et al. (2014) Dysbiosis of Gut Fungal Microbiota Is Associated with Mucosal Inflammation in Crohn’s Disease. Journal of Clinical Gastroenterology, 48, 513-523.
https://doi.org/10.1097/MCG.0000000000000035
|
[43]
|
Mars, R.A.T., Yang, Y., Ward, T., et al. (2020) Longitudi-nal Multi-Omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell, 182, 1460-1473.e17. https://doi.org/10.1016/j.cell.2020.08.007
|
[44]
|
Lin, Y., Lau, H.C., Liu, Y., et al. (2022) Altered Mycobiota Signa-tures and Enriched Pathogenic Aspergillus rambellii Are Associated with Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology, 163, 908-921. https://doi.org/10.1053/j.gastro.2022.06.038
|
[45]
|
Leonard, M.M., Valitutti, F., Karathia, H., et al. (2021) Micro-biome Signatures of Progression toward Celiac Disease Onset in At-Risk Children in a Longitudinal Prospective Cohort Study. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020322118. https://doi.org/10.1073/pnas.2020322118
|
[46]
|
Vallianou, N., Stratigou, T., Christodoulatos, G.S., et al. (2019) Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Current Obesity Reports, 8, 317-332. https://doi.org/10.1007/s13679-019-00352-2
|
[47]
|
Liu, R., Hong, J., Xu, X., et al. (2017) Gut Microbiome and Se-rum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868. https://doi.org/10.1038/nm.4358
|
[48]
|
Thingholm, L.B., Ruhlemann, M.C., Koch, M., et al. (2019) Obese Individu-als with and Without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host & Microbe, 26, 252-264.e10. https://doi.org/10.1016/j.chom.2019.07.004
|
[49]
|
Li, Q., Chang, Y., Zhang, K., et al. (2020) Implication of the Gut Microbiome Composition of Type 2 Diabetic Patients from Northern China. Scientific Re-ports, 10, Article No. 5450. https://doi.org/10.1038/s41598-020-62224-3
|
[50]
|
Da Silva, H.E., Teterina, A., Comelli, E.M., et al. (2018) Nonalcoholic Fatty Liver Disease Is Associated with Dysbiosis Independent of Body Mass Index and Insulin Resistance. Scientific Reports, 8, Article No. 1466.
https://doi.org/10.1038/s41598-018-19753-9
|
[51]
|
Murphy, K., O’Donovan, A.N., Caplice, N.M., et al. (2021) Ex-ploring the Gut Microbiota and Cardiovascular Disease. Metabolites, 11, Article 493. https://doi.org/10.3390/metabo11080493
|
[52]
|
Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14. https://doi.org/10.1186/s40168-016-0222-x
|
[53]
|
Jie, Z., Xia, H., Zhong, S.L., et al. (2017) The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nature Communications, 8, Article No. 845. https://doi.org/10.1038/s41467-017-00900-1
|
[54]
|
Hirayama, M. and Ohno, K. (2021) Parkinson’s Disease and Gut Microbiota. Annals of Nutrition and Metabolism, 77, 28-35. https://doi.org/10.1159/000518147
|
[55]
|
Zhuang, Z.Q., Shen, L.L., Li, W.W., et al. (2018) Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. Journal of Alz-heimer’s Disease, 63, 1337-1346. https://doi.org/10.3233/JAD-180176
|
[56]
|
Liu, F., Li, J., Wu, F., et al. (2019) Altered Composition and Function of Intestinal Microbiota in Autism Spectrum Disorders: A Systematic Review. Translational Psychiatry, 9, Article No. 43.
https://doi.org/10.1038/s41398-019-0389-6
|
[57]
|
Fang, X., Wang, X., Yang, S., et al. (2016) Evaluation of the Mi-crobial Diversity in Amyotrophic Lateral Sclerosis Using High-Throughput Sequencing. Frontiers in Microbiology, 7, Article 1479.
https://doi.org/10.3389/fmicb.2016.01479
|
[58]
|
Valles-Colomer, M., Falony, G., Darzi, Y., et al. (2019) The Neu-roactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nature Microbiology, 4, 623-632. https://doi.org/10.1038/s41564-018-0337-x
|
[59]
|
Riquelme, E., Zhang, Y., Zhang, L., et al. (2019) Tumor Micro-biome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178, 795-806.e12. https://doi.org/10.1016/j.cell.2019.07.008
|
[60]
|
Mahmud, M.R., Akter, S., Tamanna, S.K., et al. (2022) Impact of Gut Microbiome on Skin Health: Gut-Skin Axis Observed through the Lenses of Therapeutics and Skin Diseases. Gut Microbes, 14, Article 2096995.
https://doi.org/10.1080/19490976.2022.2096995
|
[61]
|
Blaak, E.E., Canfora, E.E., Theis, S., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. https://doi.org/10.3920/BM2020.0057
|
[62]
|
Kimura, I., Ozawa, K., Inoue, D., et al. (2013) The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43. Nature Communications, 4, Article No. 1829.
https://doi.org/10.1038/ncomms2852
|
[63]
|
Tan, J., Mckenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
|
[64]
|
Perry, R.J., Peng, L., Barry, N.A., et al. (2016) Acetate Mediates a Microbiome-Brain-Beta-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217. https://doi.org/10.1038/nature18309
|
[65]
|
Coppola, S., Avagliano, C., Calignano, A. and Canani, R.B. (2021) The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules, 26, 682. https://doi.org/10.3390/molecules26030682
|
[66]
|
Chambers, E.S., Viardot, A., Psichas, A., et al. (2015) Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut, 64, 1744-1754.
https://doi.org/10.1136/gutjnl-2014-307913
|
[67]
|
Boets, E., Gomand, S.V., Deroover, L., et al. (2017) Systemic Availability and Metabolism of Colonic-Derived Short-Chain Fatty Acids in Healthy Subjects: A Stable Isotope Study. The Journal of Physiology, 595, 541-555.
https://doi.org/10.1113/JP272613
|
[68]
|
Mcglone, E.R. and Bloom, S.R. (2019) Bile Acids and the Metabolic Syn-drome. Annals of Clinical Biochemistry, 56, 326-337. https://doi.org/10.1177/0004563218817798
|
[69]
|
Collins, S.L., Stine, J.G., Bisanz, J.E., et al. (2023) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247. https://doi.org/10.1038/s41579-022-00805-x
|
[70]
|
Shapiro, H., Kolodziejczyk, A.A., Halstuch, D., et al. (2018) Bile Acids in Glucose Metabolism in Health and Disease. Journal of Experimental Medicine, 215, 383-396. https://doi.org/10.1084/jem.20171965
|
[71]
|
Wei, M., Huang, F., Zhao, L., et al. (2020) A Dysregulated Bile Acid-Gut Microbiota Axis Contributes to Obesity Susceptibility. EBioMedicine, 55, Arti-cle 102766. https://doi.org/10.1016/j.ebiom.2020.102766
|
[72]
|
Xie, A.J., Mai, C.T., Zhu, Y.Z., et al. (2021) Bile Acids as Regulatory Molecules and Potential Targets in Metabolic Diseases. Life Sciences, 287, Article 120152. https://doi.org/10.1016/j.lfs.2021.120152
|
[73]
|
Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regu-lation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724. https://doi.org/10.1016/j.chom.2018.05.003
|
[74]
|
Gao, J., Xu, K., Liu, H., et al. (2018) Impact of the Gut Microbi-ota on Intestinal Immunity Mediated by Tryptophan Metabolism. Frontiers in Cellular and Infection Microbiology, 8, Article 13. https://doi.org/10.3389/fcimb.2018.00013
|
[75]
|
O’Mahony, S.M., Clarke, G., Borre, Y.E., et al. (2015) Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behavioural Brain Research, 277, 32-48. https://doi.org/10.1016/j.bbr.2014.07.027
|
[76]
|
Mallmann, N.H., Lima, E.S. and Lalwani, P. (2018) Dysregulation of Tryptophan Catabolism in Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 16, 135-142. https://doi.org/10.1089/met.2017.0097
|
[77]
|
Natividad, J.M., Agus, A., Planchais, J., et al. (2018) Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabo-lism, 28, 737-749.e4.
https://doi.org/10.1016/j.cmet.2018.07.001
|
[78]
|
Laurans, L., Venteclef, N., Haddad, Y., et al. (2018) Genetic Defi-ciency of Indoleamine 2,3-Dioxygenase Promotes Gut Microbiota-Mediated Metabolic Health. Nature Medicine, 24, 1113-1120.
https://doi.org/10.1038/s41591-018-0060-4
|
[79]
|
Sumara, G., Sumara, O., Kim, J.K., et al. (2012) Gut-Derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation. Cell Metabolism, 16, 588-600. https://doi.org/10.1016/j.cmet.2012.09.014
|
[80]
|
Van Galen, K.A., ter Horst, K.W. and Serlie, M.J. (2021) Seroto-nin, Food Intake, and Obesity. Obesity Reviews, 22, e13210. https://doi.org/10.1111/obr.13210
|
[81]
|
Roager, H.M. and Licht, T.R. (2018) Microbial Tryptophan Catabolites in Health and Disease. Nature Communications, 9, Article No. 3294. https://doi.org/10.1038/s41467-018-05470-4
|
[82]
|
Waclawikova, B., Codutti, A., Alim, K., et al. (2022) Gut Microbiota-Motility Interregulation: Insights from in Vivo, ex Vivo and in Silico Studies. Gut Microbes, 14, Article 1997296. https://doi.org/10.1080/19490976.2021.1997296
|
[83]
|
Zhai, L., Xiao, H., Lin, C., et al. (2023) Gut Mi-crobiota-Derived Tryptamine and Phenethylamine Impair Insulin Sensitivity in Metabolic Syndrome and Irritable Bowel Syndrome. Nature Communications, 14, Article No. 4986.
https://doi.org/10.1038/s41467-023-40552-y
|
[84]
|
Ji, Y., Gao, Y., Chen, H., et al. (2019) Indole-3-Acetic Acid Al-leviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflamma-tory Stress. Nutrients, 11, Article 2062.
https://doi.org/10.3390/nu11092062
|
[85]
|
Zgarbova, E. and Vrzal, R. (2023) Skatole: A Thin Red Line between Its Benefits and Toxicity. Biochimie, 208, 1-12.
https://doi.org/10.1016/j.biochi.2022.12.014
|
[86]
|
D’Onofrio, F., Renga, G., Puccetti, M., et al. (2021) In-dole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangi-tis. Cells, 10, Article 1622.
https://doi.org/10.3390/cells10071622
|
[87]
|
Su, X., Zhang, M., Qi, H., et al. (2022) Gut Microbiota-Derived Me-tabolite 3-Idoleacetic Acid Together with LPS Induces IL-35+ B Cell Generation. Microbiome, 10, Article No. 13. https://doi.org/10.1186/s40168-021-01205-8
|
[88]
|
Ehrlich, A.M., Pacheco, A.R., Henrick, B.M., et al. (2020) In-dole-3-Lactic Acid Associated with Bifidobacterium-Dominated Microbiota Significantly Decreases Inflammation in In-testinal Epithelial Cells. BMC Microbiology, 20, Article No. 357. https://doi.org/10.1186/s12866-020-02023-y
|
[89]
|
Zhang, Q., Zhao, Q., Li, T., et al. (2023) Lactobacillus planta-rum-Derived Indole-3-Lactic Acid Ameliorates Colorectal Tumorigenesis via Epigenetic Regulation of CD8+ T Cell Im-munity. Cell Metabolism, 35, 943-960.e9.
https://doi.org/10.1016/j.cmet.2023.04.015
|
[90]
|
Cussotto, S., Delgado, I., Anesi, A., et al. (2020) Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated with Systemic Inflammation. Frontiers in Immunology, 11, Article 557.
https://doi.org/10.3389/fimmu.2020.00557
|
[91]
|
Qi, Q., Li, J., Yu, B., et al. (2022) Host and Gut Microbial Tryp-tophan Metabolism and Type 2 Diabetes: An Integrative Analysis of Host Genetics, Diet, Gut Microbiome and Circulat-ing Metabolites in Cohort Studies. Gut, 71, 1095-1105. https://doi.org/10.1136/gutjnl-2021-324053
|
[92]
|
Sehgal, R., Ilha, M., Vaittinen, M., et al. (2021) Indole-3-Propionic Acid, a Gut-Derived Tryptophan Metabolite, Associates with Hepatic Fibrosis. Nutrients, 13, Article 3509. https://doi.org/10.3390/nu13103509
|
[93]
|
Farook, V.S., Reddivari, L., Chittoor, G., et al. (2015) Metabolites as Novel Biomarkers for Childhood Obesity-Related Traits in Mexican-American Children. Pediatric Obesity, 10, 320-327. https://doi.org/10.1111/ijpo.270
|
[94]
|
Chen, L., Yang, Y., Sun, S., et al. (2022) Indolepropionic Acid Reduces Obesity-Induced Metabolic Dysfunction through Colonic Barrier Restoration Me-diated via Tuft Cell-Derived IL-25. The FEBS Journal, 289, 5985-6004.
https://doi.org/10.1111/febs.16470
|
[95]
|
Gibson, G.R., Hutkins, R., Sanders, M.E., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502. https://doi.org/10.1038/nrgastro.2017.75
|
[96]
|
Sanders, M.E., Merenstein, D.J., Reid, G., et al. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: from Biology to the Clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605-616.
https://doi.org/10.1038/s41575-019-0173-3
|
[97]
|
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92. https://doi.org/10.3390/foods8030092
|
[98]
|
Wang, M., Chen, L. and Zhang, Z. (2021) Potential Applications of Al-ginate Oligosaccharides for Biomedicine—A Mini Review. Carbohydrate Polymers, 271, Article 118408. https://doi.org/10.1016/j.carbpol.2021.118408
|
[99]
|
Xing, M., Cao, Q., Wang, Y., et al. (2020) Advances in Re-search on the Bioactivity of Alginate Oligosaccharides. Marine Drugs, 18, Article 144. https://doi.org/10.3390/md18030144
|
[100]
|
Tran, V.C., Cho, S.Y., Kwon, J., et al. (2019) Alginate Oligosaccharide (AOS) Improves Immuno-Metabolic Systems by Inhibiting STOML2 Overexpression in High-Fat-Diet-Induced Obese Zebrafish. Food & Function, 10, 4636-4648.
https://doi.org/10.1039/C9FO00982E
|
[101]
|
Li, S., He, N. and Wang, L. (2019) Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Marine Drugs, 17, Article 540. https://doi.org/10.3390/md17090540
|
[102]
|
Li, S., Wang, L., Liu, B., et al. (2020) Unsaturated Alginate Oligosac-charides Attenuated Obesity-Related Metabolic Abnormalities by Modulating Gut Microbiota in High-Fat-Diet Mice. Food & Function, 11, 4773-4784.
https://doi.org/10.1039/C9FO02857A
|