[1]
|
Bentz, A.B. (2017) A Review of Quercetin: Chemistry, Antioxident Properties, and Bioavailability. Journal of Young Investigators. https://sc.panda985.com/scholar?q=A+Review+of+Quercetin%3A+Chemistry%2C+Antioxident+Properties%2C+and+Bioavailability
|
[2]
|
Bhaskarachary, K. and Joshi, A.K.R. (2018) Natural Bioactive Molecules with Antidiabetic Attributes: Insights into Structure-Activity Relationships. Studies in Natural Products Chemistry, 57, 353-388. https://doi.org/10.1016/b978-0-444-64057-4.00011-9
|
[3]
|
Kim, D.H., Khan, H., Ullah, H., Hassan, S.T.S., Šmejkal, K., Efferth, T., et al. (2019) Microrna Targeting by Quercetin in Cancer Treatment and Chemoprotection. Pharmacological Research, 147, Article ID: 104346. https://doi.org/10.1016/j.phrs.2019.104346
|
[4]
|
Ożarowski, M., Mikołajczak, P.Ł., Kujawski, R., Wielgus, K., Klejewski, A., Wolski, H., et al. (2018) Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy‐Induced Hypertension: Review of in Vitro, in Vivo, and Clinical Studies. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 7421489. https://doi.org/10.1155/2018/7421489
|
[5]
|
Ezzati, M., Yousefi, B., Velaei, K. and Safa, A. (2020) A Review on Anti-Cancer Properties of Quercetin in Breast Cancer. Life Sciences, 248, Article ID: 117463. https://doi.org/10.1016/j.lfs.2020.117463
|
[6]
|
Agarwal, M.L., Agarwal, A., Taylor, W.R. and Stark, G.R. (1995) P53 Controls Both the G2/M and the G1 Cell Cycle Checkpoints and Mediates Reversible Growth Arrest in Human Fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 92, 8493-8497. https://doi.org/10.1073/pnas.92.18.8493
|
[7]
|
Choi, E.J., Bae, S.M. and Ahn, W.S. (2008) Antiproliferative Effects of Quercetin through Cell Cycle Arrest and Apoptosis in Human Breast Cancer MDA-MB-453 Cells. Archives of Pharmacal Research, 31, 1281-1285. https://doi.org/10.1007/s12272-001-2107-0
|
[8]
|
Song, H., Sneddon, A.A., Heys, S.D. and Wahle, K.W.J. (2012) Regulation of Fatty Acid Synthase (FAS) and Apoptosis in Estrogen-Receptor Positive and Negative Breast Cancer Cells by Conjugated Linoleic Acids. Prostaglandins, Leukotrienes and Essential Fatty Acids, 87, 197-203. https://doi.org/10.1016/j.plefa.2012.09.002
|
[9]
|
Brusselmans, K., Vrolix, R., Verhoeven, G. and Swinnen, J.V. (2005) Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. Journal of Biological Chemistry, 280, 5636-5645. https://doi.org/10.1074/jbc.m408177200
|
[10]
|
Huang, S., Hsu, C. and Yen, G. (2006) Growth Inhibitory Effect of Quercetin on SW 872 Human Liposarcoma Cells. Life Sciences, 79, 203-209. https://doi.org/10.1016/j.lfs.2005.12.046
|
[11]
|
Oakes, S., Lin, S. and Bassik, M. (2006) The Control of Endoplasmic Reticulum-Initiated Apoptosis by the BCL-2 Family of Proteins. Current Molecular Medicine, 6, 99-109. https://doi.org/10.2174/156652406775574587
|
[12]
|
Abu-Qare, A.W. and Abou-Donia, M.B. (2001) Biomarkers of Apoptosis: Release of Cytochrome C, Activation of Caspase-3, Induction of 8-Hydroxy-2’-Deoxyguanosine, Increased 3-Nitrotyrosine, and Alteration of P53 Gene. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 4, 313-332. https://doi.org/10.1080/109374001301419737
|
[13]
|
Tawani, A. and Kumar, A. (2015) Structural Insight into the Interaction of Flavonoids with Human Telomeric Sequence. Scientific Reports, 5, Article No. 17574. https://doi.org/10.1038/srep17574
|
[14]
|
Ranganathan, S., Halagowder, D. and Sivasithambaram, N.D. (2015) Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. PLOS ONE, 10, e0141370. https://doi.org/10.1371/journal.pone.0141370
|
[15]
|
Zhu, H., Hao, J., Niu, Y., Liu, D., Chen, D. and Wu, X. (2018) Molecular Targets of Chinese Herbs: A Clinical Study of Metastatic Colorectal Cancer Based on Network Pharmacology. Scientific Reports, 8, Article No. 7238. https://doi.org/10.1038/s41598-018-25500-x
|
[16]
|
Davis, F.M., Stewart, T.A., Thompson, E.W. and Monteith, G.R. (2014) Targeting EMT in Cancer: Opportunities for Pharmacological Intervention. Trends in Pharmacological Sciences, 35, 479-488. https://doi.org/10.1016/j.tips.2014.06.006
|
[17]
|
Chen, K., Hsu, W., Ho, J., Lin, C., Chu, C., Kandaswami, C.C., et al. (2018) Flavonoids Luteolin and Quercetin Inhibit RPS19 and Contributes to Metastasis of Cancer Cells through C-Myc Reduction. Journal of Food and Drug Analysis, 26, 1180-1191. https://doi.org/10.1016/j.jfda.2018.01.012
|
[18]
|
Salama, Y.A., El-karef, A., El Gayyar, A.M. and Abdel-Rahman, N. (2019) Beyond Its Antioxidant Properties: Quercetin Targets Multiple Signalling Pathways in Hepatocellular Carcinoma in Rats. Life Sciences, 236, Article ID: 116933. https://doi.org/10.1016/j.lfs.2019.116933
|
[19]
|
Wu, L., Li, J., Liu, T., Li, S., Feng, J., Yu, Q., et al. (2019) Quercetin Shows Anti‐Tumor Effect in Hepatocellular Carcinoma LM3 Cells by Abrogating JAK2/STAT3 Signaling Pathway. Cancer Medicine, 8, 4806-4820. https://doi.org/10.1002/cam4.2388
|
[20]
|
Reyes-Avendaño, I., Reyes-Jiménez, E., González-García, K., Pérez-Figueroa, D.C., Baltiérrez-Hoyos, R., Tapia-Pastrana, G., et al. (2022) Quercetin Regulates Key Components of the Cellular Microenvironment during Early Hepatocarcinogenesis. Antioxidants, 11, Article No. 358. https://doi.org/10.3390/antiox11020358
|
[21]
|
Granado-Serrano, A.B., Martiín, M.A., Bravo, L., Goya, L. and Ramos, S. (2006) Quercetin Induces Apoptosis via Caspase Activation, Regulation of Bcl-2, and Inhibition of PI-3-Kinase/Akt and ERK Pathways in a Human Hepatoma Cell Line (HepG2). The Journal of Nutrition, 136, 2715-2721. https://doi.org/10.1093/jn/136.11.2715
|
[22]
|
Ji, Y., Li, L., Ma, Y., Li, W., Li, L., Zhu, H., et al. (2019) Quercetin Inhibits Growth of Hepatocellular Carcinoma by Apoptosis Induction in Part via Autophagy Stimulation in Mice. The Journal of Nutritional Biochemistry, 69, 108-119. https://doi.org/10.1016/j.jnutbio.2019.03.018
|
[23]
|
Wang, G., Zhang, J., Liu, L., Sharma, S. and Dong, Q. (2012) Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through P53/Bcl-xl. PLOS ONE, 7, e51764. https://doi.org/10.1371/journal.pone.0051764
|
[24]
|
Sethi, G., Rath, P., Chauhan, A., Ranjan, A., Choudhary, R., Ramniwas, S., et al. (2023) Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements. Pharmaceutics, 15, Article No. 712. https://doi.org/10.3390/pharmaceutics15020712
|
[25]
|
Wang, R., Zhang, H., Wang, Y., Song, F. and Yuan, Y. (2017) Inhibitory Effects of Quercetin on the Progression of Liver Fibrosis through the Regulation of NF-κB/IκBα, P38 MAPK, and Bcl-2/Bax Signaling. International Immunopharmacology, 47, 126-133. https://doi.org/10.1016/j.intimp.2017.03.029
|
[26]
|
Ha, E.J., Kim, K.Y., Kim, C.E., Jun, D.Y. and Kim, Y.H. (2019) Enhancement of Quercetin-Induced Apoptosis by Cotreatment with Autophagy Inhibitor Is Associated with Augmentation of Bak-Dependent Mitochondrial Pathway in Jurkat T Cells. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7989276. https://doi.org/10.1155/2019/7989276
|
[27]
|
Ren, K., Li, Y., Wu, G., Ren, J., Lu, H., Li, Z., et al. (2017) Quercetin Nanoparticles Display Antitumor Activity via Proliferation Inhibition and Apoptosis Induction in Liver Cancer Cells. International Journal of Oncology, 50, 1299-1311. https://doi.org/10.3892/ijo.2017.3886
|
[28]
|
Yang, H., Xu, S., Tang, L., Gong, J., Fang, H., Wei, J., et al. (2022) Targeting of Non-Apoptotic Cancer Cell Death Mechanisms by Quercetin: Implications in Cancer Therapy. Frontiers in Pharmacology, 13, Article 1043056. https://doi.org/10.3389/fphar.2022.1043056
|
[29]
|
Ding, Y., Chen, X., Wang, B., Yu, B., Ge, J. and Shi, X. (2018) Quercetin Suppresses the Chymotrypsin-Like Activity of Proteasome via Inhibition of MEK1/ERK1/2 Signaling Pathway in Hepatocellular Carcinoma HepG2 Cells. Canadian Journal of Physiology and Pharmacology, 96, 521-526. https://doi.org/10.1139/cjpp-2017-0655
|
[30]
|
Wang, Z., Ma, J., Li, X., Wu, Y., Shi, H., Chen, Y., et al. (2021) Quercetin Induces P53‐Independent Cancer Cell Death through Lysosome Activation by the Transcription Factor EB and Reactive Oxygen Species‐Dependent Ferroptosis. British Journal of Pharmacology, 178, 1133-1148. https://doi.org/10.1111/bph.15350
|
[31]
|
Neamtu, A., Maghiar, T., Alaya, A., Olah, N., Turcus, V., Pelea, D., et al. (2022) A Comprehensive View on the Quercetin Impact on Colorectal Cancer. Molecules, 27, Article No. 1873. https://doi.org/10.3390/molecules27061873
|
[32]
|
Raja, S.B., Rajendiran, V., Kasinathan, N.K., et al. (2017) Differential Cytotoxic Activity of Quercetin on Colonic Cancer Cells Depends on ROS Generation through COX-2 Expression. Food and Chemical Toxicology, 106, 92-106. https://doi.org/10.1016/j.fct.2017.05.006
|
[33]
|
Cohen, P.A., Jhingran, A., Oaknin, A. and Denny, L. (2019) Cervical Cancer. The Lancet, 393, 169-182. https://doi.org/10.1016/s0140-6736(18)32470-x
|
[34]
|
Xu, W., Xie, S., Chen, X., Pan, S., Qian, H. and Zhu, X. (2021) Effects of Quercetin on the Efficacy of Various Chemotherapeutic Drugs in Cervical Cancer Cells. Drug Design, Development and Therapy, 15, 577-588. https://doi.org/10.2147/dddt.s291865
|
[35]
|
Bergengren, O., Pekala, K.R., Matsoukas, K., Fainberg, J., Mungovan, S.F., Bratt, O., et al. (2023) 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. European Urology, 84, 191-206. https://doi.org/10.1016/j.eururo.2023.04.021
|
[36]
|
Ghafouri-Fard, S., Shabestari, F.A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., et al. (2021) Emerging Impact of Quercetin in the Treatment of Prostate Cancer. Biomedicine & Pharmacotherapy, 138, Article ID: 111548. https://doi.org/10.1016/j.biopha.2021.111548
|
[37]
|
Aalinkeel, R., Bindukumar, B., Reynolds, J.L., Sykes, D.E., Mahajan, S.D., Chadha, K.C., et al. (2008) The Dietary Bioflavonoid, Quercetin, Selectively Induces Apoptosis of Prostate Cancer Cells by Down‐Regulating the Expression of Heat Shock Protein 90. The Prostate, 68, 1773-1789. https://doi.org/10.1002/pros.20845
|
[38]
|
Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch‐Ernst, K.I., et al. (2017) Safety Aspects of the Use of Quercetin as a Dietary Supplement. Molecular Nutrition & Food Research, 62, Article ID: 1700447. https://doi.org/10.1002/mnfr.201700447
|
[39]
|
Han, M.K., Barreto, T.A., Martinez, F.J., Comstock, A.T. and Sajjan, U.S. (2020) Randomised Clinical Trial to Determine the Safety of Quercetin Supplementation in Patients with Chronic Obstructive Pulmonary Disease. BMJ Open Respiratory Research, 7, e000392. https://doi.org/10.1136/bmjresp-2018-000392
|
[40]
|
Lu, N.T., Crespi, C.M., Liu, N.M., Vu, J.Q., Ahmadieh, Y., Wu, S., et al. (2015) A Phase I Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C. Phytotherapy Research, 30, 160-168. https://doi.org/10.1002/ptr.5518
|
[41]
|
Rauf, A., Imran, M., Khan, I.A., Ur‐Rehman, M., Gilani, S.A., Mehmood, Z., et al. (2018) Anticancer Potential of Quercetin: A Comprehensive Review. Phytotherapy Research, 32, 2109-2130. https://doi.org/10.1002/ptr.6155
|
[42]
|
Chen, S., Jiang, H., Wu, X. and Fang, J. (2016) Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators of Inflammation, 2016, Article ID: 9340637. https://doi.org/10.1155/2016/9340637
|
[43]
|
Song, X., Wang, Y. and Gao, L. (2020) Mechanism of Antioxidant Properties of Quercetin and Quercetin-DNA Complex. Journal of Molecular Modeling, 26, Article No. 133. https://doi.org/10.1007/s00894-020-04356-x
|
[44]
|
Luo, J., Zhang, C., Liu, Q., Ou, S., Zhang, L. and Peng, X. (2017) Combinative Effect of Sardine Peptides and Quercetin Alleviates Hypertension through Inhibition of Angiotensin I Converting Enzyme Activity and Inflammation. Food Research International, 100, 579-585. https://doi.org/10.1016/j.foodres.2017.07.019
|
[45]
|
Zu, G., Sun, K., Li, L., Zu, X., Han, T. and Huang, H. (2021) Mechanism of Quercetin Therapeutic Targets for Alzheimer Disease and Type 2 Diabetes Mellitus. Scientific Reports, 11, Article No. 22959. https://doi.org/10.1038/s41598-021-02248-5
|
[46]
|
Abdu, S., Juaid, N., Amin, A., Moulay, M. and Miled, N. (2022) Effects of Sorafenib and Quercetin Alone or in Combination in Treating Hepatocellular Carcinoma: In Vitro and in Vivo Approaches. Molecules, 27, Article No. 8082. https://doi.org/10.3390/molecules27228082
|
[47]
|
Shui, L., Wang, W., Xie, M., Ye, B., Li, X., Liu, Y., et al. (2020) Isoquercitrin Induces Apoptosis and Autophagy in Hepatocellular Carcinoma Cells via AMPK/mTOR/p70S6K Signaling Pathway. Aging, 12, 24318-24332. https://doi.org/10.18632/aging.202237
|
[48]
|
Dai, W., Gao, Q., Qiu, J., Yuan, J., Wu, G. and Shen, G. (2015) Quercetin Induces Apoptosis and Enhances 5-FU Therapeutic Efficacy in Hepatocellular Carcinoma. Tumor Biology, 37, 6307-6313. https://doi.org/10.1007/s13277-015-4501-0
|
[49]
|
Lee, R.H., Cho, J.H., Jeon, Y., Bang, W., Cho, J., Choi, N., et al. (2015) Quercetin Induces Antiproliferative Activity against Human Hepatocellular Carcinoma (HepG2) Cells by Suppressing Specificity Protein 1 (Sp1). Drug Development Research, 76, 9-16. https://doi.org/10.1002/ddr.21235
|
[50]
|
Jeon, J., Kwon, S., Ban, K., Kwon Hong, Y., Ahn, C., Sung, J., et al. (2019) Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2. Nutrition and Cancer, 71, 861-869. https://doi.org/10.1080/01635581.2018.1559929
|