机器学习驱动下给水管网需水精准预测与全流程低碳调度技术
Machine Learning-Driven Precise Water Demand Forecasting and Full-Process Low-Carbon Scheduling Technology for Water Supply Networks
DOI: 10.12677/ulu.2026.141002, PDF, HTML, XML,   
作者: 蒙延娟:桂林嘉华环境科技有限公司,广西 桂林;唐显治*:广西鼎联环保科技有限公司,广西 桂林;董 堃:桂林理工大学环境科学与工程学院,广西 桂林
关键词: 机器学习给水管网需水预测低碳调度碳排放深度强化学习Machine Learning Water Supply Network Water Demand Forecasting Low-Carbon Scheduling Carbon Emissions Deep Reinforcement Learning
摘要: 城市给水管网系统作为城市重要基础设施,其运行过程中的能耗与碳排放问题日益受到关注。在“双碳”战略目标背景下,如何实现给水管网的低碳化运行已成为水务工程领域的研究热点。研究从全生命周期视角出发,系统梳理了给水管网碳排放来源与构成,重点综述了机器学习技术在需水预测与低碳调度领域的应用进展。研究表明,给水管网运行阶段碳排放占全生命周期排放总量的80%以上,其中泵站能耗是主要排放源。长短期记忆网络(LSTM)、图神经网络(GNN)、随机森林(RF)及XGBoost等机器学习模型在需水预测中展现出显著优势,预测精度可达90%以上。深度强化学习与多目标优化算法在泵站调度优化中的应用可实现10%~30%的节能效果。结合国内外的典型城市案例,进一步探讨了机器学习驱动的给水管网低碳运行技术路径与未来发展方向。
Abstract: As a vital urban infrastructure, the energy consumption and carbon emissions of urban water supply network systems are receiving increasing attention. Against the background of the “dual carbon” strategic goals, achieving low-carbon operation of water supply networks has become a research hotspot in the field of water engineering. This study systematically reviews the sources and composition of carbon emissions in water supply networks from a full life cycle perspective, focusing on the application progress of machine learning technology in water demand forecasting and low-carbon scheduling. The study shows that carbon emissions during the operation phase of water supply networks account for more than 80% of the total life cycle emissions, with pump station energy consumption being the main source of emissions. Machine learning models such as Long Short-Term Memory (LSTM) networks, Graph Neural Networks (GNN), Random Forest (RF), and XGBoost have shown significant advantages in water demand forecasting, with prediction accuracy exceeding 90%. The application of deep reinforcement learning and multi-objective optimization algorithms in pump station scheduling optimization can achieve energy savings of 10% to 30%. Based on typical urban cases at home and abroad, this study further explores the technical pathways and future development directions of machine learning-driven low-carbon operation of water supply networks.
文章引用:蒙延娟, 唐显治, 董堃. 机器学习驱动下给水管网需水精准预测与全流程低碳调度技术 [J]. 城镇化与集约用地, 2026, 14(1): 17-27. https://doi.org/10.12677/ulu.2026.141002

1. 引言

城市给水管网系统是支撑城市运行的重要基础设施,其运行过程具有连续性强、能耗水平高、调度复杂度大的典型特征。据统计,全球水务系统的能源消耗约占城市总用电量的2%~4%,在部分超大城市中甚至超过5% [1] [2]。在我国“双碳”战略目标背景下,城市基础设施的低碳转型已成为工程与管理领域的重要研究方向[3]。给水系统的碳排放主要表现为电力间接排放,其强度受电力结构、设备效率及运行策略等多重因素影响[4] [5]

给水管网的碳排放并非仅来源于单一设备或环节,而是贯穿于取水、输水、加压、配水以及末端用水的完整流程[6]。尤其在城市规模不断扩张、用水需求呈现显著时空非均匀性的背景下,传统依赖经验或静态规则的运行调度方式已难以满足低碳化运行需求[7] [8]。因此,从系统层面识别给水管网碳排放来源,并且引入数据驱动的优化方法,是当前水务工程领域亟需解决的关键问题。

近年来,随着传感器网络、SCADA系统以及城市信息化平台的快速发展,给水管网运行数据的获取精度和时间分辨率显著提升,为机器学习等数据驱动方法的应用提供了现实基础[9] [10]。机器学习在处理非线性系统、复杂时序数据以及高维特征方面展现出明显优势,已逐步应用于需水预测、漏损识别与调度优化等水务场景[11]-[13]。系统梳理机器学习在给水管网低碳运行中的应用进展,对于推动水务系统绿色转型具有重要理论与实践意义。

本文基于全生命周期视角,对给水管网系统碳排放来源进行系统分析,并重点综述机器学习在需水预测与低碳调度中的应用研究进展。全文依次从给水管网工艺流程与碳源解析入手,总结主流机器学习模型的技术特征及其减碳机理,比较不同算法在工程应用中的适用性,并结合典型城市案例探讨未来发展方向。

2. 给水管网全流程碳排放来源分析

2.1. 给水管网工艺过程与系统边界

城市给水管网通常包括取水构筑物、原水输水泵站、水处理厂、清水输配泵站、配水管网以及用户端设施。该系统以连续供水为目标,其运行过程高度依赖电力驱动设备[14]。基于生命周期评价(LCA)方法,给水管网碳排放可分为建设阶段、运行阶段与维护阶段,其中运行阶段是碳排放的主要贡献环节[15] [16]。Qin等[17]对我国265个城市水系统的全生命周期碳排放进行了评估,发现运行阶段碳排放占比通常超过80%。

Zhang等[18]基于“水–能源–碳”关联视角,建立了城市水系统碳排放核算框架,将郑州市水系统划分为取水、供水、用水和污水处理四个子系统,为城市水务系统碳排放核算提供了方法参考。中国城镇供水排水协会[19]发布的《城镇水务系统碳核算与减排路径技术指南》进一步规范了给水系统、污水系统、再生水系统和雨水系统的碳排放核算边界与方法(图1)。

Figure 1. Urban water supply network

1. 城市给水管网

2.2. 输水与配水环节的直接碳排放

在运行阶段,水泵系统是给水管网最主要的直接能耗与碳排放来源。泵站运行效率不仅与设备性能相关,还受到运行工况和调度策略的显著影响[20] [21]。研究表明,恒速泵在偏离设计工况运行时效率显著下降,而高峰用水时段集中启泵会进一步提高系统的单位供水能耗[22]。Qiu等[23]对天津市供水企业全过程碳排放进行了分析,发现管网漏损引起的碳排放是管网维护碳排放的1.88倍,凸显了漏损控制对碳减排的重要性。

此外,长期偏高的管网运行压力会加剧漏损问题,导致为补偿漏损而进行的额外取水、处理与加压过程,从而形成间接碳排放[24]。压力管理是控制管网漏损的有效手段。研究指出,管网压力每降低10%,漏损量可减少约7%~12%,对应的泵站能耗亦同步下降[25]。Stokes等[26]提出了考虑时变碳排放因子的泵站调度优化方法,可根据电网碳强度的时变特征优化泵站运行策略。

2.3. 需水预测偏差引发的隐性碳排放

除直接能耗外,需水预测偏差被认为是给水管网系统中的重要隐性碳源。预测结果直接影响泵站启停计划与运行负荷[27]。当预测值高于实际需求时,会产生冗余输水和无效能耗;当预测值低于实际需求时,则需要通过应急启泵或高功率运行进行补偿,从而导致能耗与碳排放上升[28]

Kühnert等[29]的研究表明,需水预测误差每降低1%,泵站能耗可下降约0.6%~1.2%,表明预测精度提升对系统减碳具有显著间接效应。因此,提高需水预测精度是实现给水管网低碳运行的关键途径之一。

2.4. 生命周期视角下的综合碳源

从生命周期角度看,给水管网的碳排放还包括管材生产、设备制造与更新以及信息化系统运行等环节[30]。Wang等[31]对我国城市污水处理系统的温室气体排放进行了全面核算,建立了包含CH4、N2O和CO2的厂级排放清单。Zhang等[32]综述了我国城市水务基础设施的温室气体排放特征,指出未来研究应关注污水系统碳排放清单编制、能效提升措施的成本效益分析等方向。近年来有研究开始关注机器学习模型训练与部署过程中的数据中心能耗问题,尽管该部分碳排放在当前给水系统中占比较小,但随着模型复杂度和应用规模扩大,其环境影响值得进一步关注[33]

3. 机器学习在给水需水预测中的应用研究

3.1. 时间序列预测模型

长短期记忆网络(LSTM)是近年来给水需水预测中应用最为广泛的深度学习模型之一。该模型通过门控机制有效捕捉用水需求的长期与短期依赖特征,在多个城市案例中显著优于传统ARIMA等统计模型[34] [35]。Zanfei等[36]提出了基于多变量LSTM的短期需水预测模型,通过融合气象数据显著提升了预测精度。Pu等[37]开发了结合小波变换的Wavelet-CNN-LSTM混合模型,在苏州城市需水预测中取得了优异表现。

此外,随机森林(RF)与XGBoost等集成学习模型因其训练稳定性强、对噪声数据鲁棒性较高,也被广泛应用于中短期需水预测任务[38] [39]。Chen等[40]提出了多随机森林模型(W-RFR),结合离散小波变换进行日供水量预测,在重庆市的实际应用中展现出较高精度。Grigoryan等[41]对深度学习与传统机器学习算法进行了对比研究,发现结合自编码器的AE-LSTM模型在日尺度和小时尺度预测中均优于支持向量回归(SVR)和随机森林。

3.2. 空间特征建模与卷积神经网络

随着城市空间数据和分区用水信息的引入,卷积神经网络(CNN)逐渐被用于刻画不同供水分区之间的空间相关性。通过将区域需水量映射为空间特征矩阵,CNN能够识别用水模式的空间聚集特征,为分区调度提供支持[42]。Hu等[43]提出了CNN-BiLSTM混合模型,有效融合了需水时序的时间依赖性与空间分布特征。Zhou等[44]开发了基于注意力机制的CNN-LSTM框架,用于苏州市多变量日供水预测,显著提升了模型对复杂模式的捕捉能力。

3.3. 图神经网络在给水管网中的新进展

近年来,图神经网络(GNN)因其能够直接利用管网拓扑结构而受到广泛关注[45]。GNN将管网节点与管段视为图结构中的节点与边,可同时建模需水特征与水力连接关系。Zanfei等[46]采用图卷积循环神经网络进行需水预测,证明了管网拓扑信息对预测精度的提升作用。在复杂给水管网中,GNN在预测精度与模型泛化能力方面均优于仅考虑时间或空间特征的模型[47]

GNN在管网漏损检测与定位领域也展现出良好应用前景。Zhang等[13]提出了算法知情图神经网络(AIGNN),利用Ford-Fulkerson算法知识增强模型的泛化能力。Wu等[48]开发了基于图卷积神经网络(CGNN)的管网漏损定位模型,在中国H市的实际案例中取得了90%以上的定位准确率。Barros等[12]将图像信号处理技术应用于管网压力数据分析,实现了基于时变图结构的漏损检测。

3.4. 各算法在给水管网应用中的局限性

尽管上述机器学习模型在给水管网需水预测中展现出显著优势,但各类算法在实际工程应用中仍存在不同程度的局限性,需在模型选择与部署时加以考虑。

(1) LSTM的长时记忆失效问题

LSTM虽通过门控机制设计用于捕捉长期依赖关系,但在实际应用中,当序列长度超过数百个时间步时,其对远距离历史信息的记忆能力会显著衰减[49]。在给水管网场景下,当需利用数周甚至数月前的用水模式信息(如季节性特征、节假日效应)时,标准LSTM模型往往难以有效捕捉这些长周期依赖关系。此外,LSTM在训练过程中仍可能出现梯度消失问题,导致模型对早期输入信息的敏感度降低[50]

(2) GNN的过平滑问题

图神经网络在深层堆叠时会出现过平滑(over-smoothing)现象,即随着网络层数增加,不同节点的特征表示趋于一致,导致模型对局部特征的区分能力下降[51]。对于大规模城市给水管网,这一问题尤为突出:当GNN层数增加以扩大感受野、捕捉更远距离的拓扑依赖时,节点特征可能在信息传播过程中被过度平滑,反而降低预测精度[52]。目前,残差连接、跳跃连接、DropEdge等技术被用于缓解过平滑问题,但在复杂管网拓扑下的效果仍有待进一步验证。此外,GNN的计算复杂度随管网规模增大而显著上升,对于包含数万节点的实际城市管网,模型的训练与推理效率面临挑战[53]

(3) 深度强化学习的训练收敛难问题

深度强化学习(DRL)在泵站调度优化中虽展现出良好应用前景,但其训练过程面临多重挑战。首先,样本效率低是DRL的固有缺陷,智能体需要与环境进行大量交互才能学习到有效策略,而给水管网的真实运行数据获取成本高昂,仿真环境与实际系统之间又存在不可避免的模型偏差(sim-to-real gap) [54]。其次,奖励函数设计直接影响策略学习方向,但在多目标优化场景下(如同时考虑能耗、水压、水质等),奖励函数的权重设置缺乏统一标准,不同设计可能导致策略收敛到截然不同的局部最优解[55]。此外,DRL在高维连续动作空间中的稳定性较差,策略梯度估计的高方差容易导致训练过程振荡甚至发散。

(4) 集成学习模型的适用边界

随机森林与XGBoost等集成学习模型虽然训练稳定、对噪声鲁棒,但其本质为静态映射模型,难以有效建模时序数据中的动态依赖关系。在需水量呈现明显自相关特征的场景下,集成学习模型的预测精度通常逊于循环神经网络。此外,这类模型对特征工程的依赖程度较高,需要人工构建滞后特征、滑动窗口统计量等时序特征,增加了模型开发的工作量与领域知识要求[56]

Table 1. Model performance comparison

1. 模型性能对比

模型类型

代表算法

预测精度

适用场景

减碳效果

计算复杂度

参考文献

时间序列

LSTM, GRU

>90%

短期需水预测

间接(提升调度精度)

中等

[34]-[37]

空间建模

CNN, CNN-BiLSTM

85%~92%

多分区协同预测

10%~15%节能

较高

[42]-[44]

图网络

GNN, GCRNN

90%~95%

复杂拓扑管网

10%~20%节能

[46]-[50]

集成学习

RF, XGBoost

88%~93%

中短期、噪声数据

间接

[38]-[41]

强化学习

DQN, PPO

-

实时调度优化

10~30%节能

[54]-[56]

具体模型性能对比如表1所示,表中性能指标来源于不同研究在各自数据集上的报告结果。但目前给水管网需水预测领域尚缺乏公开统一的基准数据集,不同研究采用的实验条件(包括管网规模、时间分辨率、气象条件、数据质量、评价指标定义等)存在显著差异,因此表中数值仅供参考,难以进行严格的横向比较。未来研究亟需建立标准化的基准数据集与统一评估协议,以实现不同算法性能的公平对比,这也是当前文献间比较的主要难点所在。

4. 机器学习驱动的低碳调度优化

4.1. 预测与调度耦合的减碳路径

机器学习模型通过提高需水预测精度,为给水管网调度提供更可靠的输入。在此基础上,结合变频泵控制、压力分区管理与错峰供水策略,可使泵站运行更接近高效率区间,从而直接降低系统能耗与碳排放[57] [58] (如图2)。Chen等[59]将深度学习与ResNet自注意力机制相结合,开发了污水泵站能耗优化模型,与传统PID控制相比可实现10%~30%的节能效果。

深度强化学习(DRL)在泵站实时调度优化中展现出显著优势。Hajgató等[60]将深度Q网络(DQN)应用于配水系统泵站优化,发现DRL方法在保持与传统优化方法相当性能的同时,计算速度提升了2倍。Shen等[61]提出了基于近端策略优化(PPO)的泵站实时调度方法,有效平衡了系统韧性与运行成本。Li等[62]开发了知识辅助强化学习框架(KA-RL),结合历史数据知识指导奖励函数设计,在任意管网拓扑下实现了压力管理优化。

Figure 2. Schematic diagram of the coupling mechanism of forecasting-scheduling-carbon reduction

2. 预测–调度–减碳耦合机制示意图

4.2. 不同模型在减碳效果上的比较

现有研究普遍认为,单纯基于时间序列的预测模型在减碳效果上存在一定局限,而引入空间或拓扑信息的模型在多区域协同调度中展现出更高潜力[63]。在实际案例中,基于GNN的预测与调度策略可实现10%~20%的泵站能耗降低,相应碳排放强度显著下降[64]

多目标优化方法在泵站调度中也得到了广泛应用。Abdallah等[65]采用粒子群优化算法(PSO)和非支配排序遗传算法(NSGA-II)进行泵站调度优化,在能效与水质之间实现了有效权衡。Filipe等[66]将数据驱动方法与预测控制相结合,在污水泵站能耗优化中取得了显著效果。神经进化方法在实时多目标优化中也展现出良好前景,可在系统韧性与运行成本之间探索帕累托前沿[67]

4.3. 预测–调度耦合的算法流程与不确定性处理

机器学习驱动的给水管网低碳调度系统通常采用两阶段耦合架构:第一阶段为需水预测模块,负责生成未来时段的需水量预测值及其不确定性估计;第二阶段为调度优化模块,以预测结果为输入,在考虑系统约束与不确定性的条件下求解最优泵站运行策略。需水预测模块不仅输出点预测值 D ^ t ,还应提供预测不确定性的量化估计。常用的不确定性表征方式包括:① 预测区间:给出覆盖率为( 1α )的置信区间 | D ^ t lower , D ^ t upper | ,其中 α 通常取0.05或0.10;② 概率密度分布:采用分位数回归或蒙特卡洛Dropout等方法,输出预测值的完整概率分布P ( D t | X t );③ 集成预测:利用多模型集成输出预测均值与方差( μ t , σ t 2 )。

调度优化模块接收预测模块的输出后,可采用以下策略处理预测不确定性:策略A (鲁棒优化方法):在最坏情况假设下进行调度决策,将需水量设定在预测区间的上界 D ^ t upper ,确保在任何可能的需水实现下系统均能满足供水约束。该方法保守性强,适用于供水安全性要求极高的场景。策略B (随机规划方法):将需水量视为随机变量,基于预测概率分布构建多场景优化模型。通过对多个需水场景进行加权优化,在期望意义下最小化能耗与碳排放,同时通过机会约束控制供水不足的风险概率。策略C (滚动时域优化):采用模型预测控制框架,在每个控制时刻根据最新预测结果重新求解优化问题,仅执行当前时刻的控制动作。这种闭环控制方式能够有效补偿预测偏差,提高系统对不确定性的适应能力。策略D (深度强化学习的隐式处理):在DRL框架下,智能体通过与环境的持续交互学习最优策略,预测不确定性被隐式地纳入状态转移概率中。经过充分训练的DRL策略能够自适应地应对不同程度的预测偏差,无需显式建模不确定性分布。图3清晰阐述了需水预测结果如何作为输入传递给优化调度模型,并展示了调度模型如何处理预测的不确定性。

Figure 3. Coupling framework and data flow diagram of water demand forecasting and dispatching optimization

3. 需水预测–调度优化耦合框架与数据流向图

5. 典型城市应用与工程可行性

以上海、深圳、郑州等城市为代表的国内研究表明,在具备完善监测系统与信息化基础的条件下,机器学习模型能够与现有SCADA系统实现较高程度的集成[68]。粤海水务大罗水厂采用“减碳、换碳、抵碳”三步走策略,通过优化选址实现重力流输配,供水系统电耗低至16.57 kWh/kt,仅为行业平均水平的6.81% [69]

在国际层面,意大利东北部城市采用PSO优化的LSTM模型进行区域需水预测,在多个独立计量区域(DMA)实现了较高的预测精度[70]。这些实证结果显示,在引入数据驱动预测与智能调度后,给水管网系统在降低能耗与碳排放的同时,供水安全性与运行稳定性均得到有效保障,表明该技术路径在工程实践中具有较高可行性。

6. 结论与展望

综上所述,给水管网系统碳排放高度集中于运行阶段,尤其是泵站能耗与预测偏差引发的非最优运行行为。机器学习通过提升需水预测精度并支撑低碳调度决策,在降低系统碳排放方面展现出显著潜力。本文得出以下主要结论:

(1) 给水管网运行阶段碳排放占全生命周期排放总量的80%以上,泵站能耗是主要排放源,管网漏损引发的间接碳排放不容忽视。

(2) LSTM、GNN、随机森林及XGBoost等机器学习模型在需水预测中展现出显著优势,预测精度可达90%以上,其中GNN能够有效利用管网拓扑信息提升预测精度与泛化能力。

(3) 深度强化学习与多目标优化算法在泵站调度优化中可实现10%~30%的节能效果,预测精度每提升1%可带来0.6%~1.2%的能耗降低。

未来研究可进一步关注以下方向;① 模型自身能耗的评估与优化;② 老旧管网数据不完备条件下的模型鲁棒性研究;③ 预测–调度–碳排放耦合机制的系统化建模;④ 数字孪生与物理信息融合的智能水务系统构建。这些研究将为给水管网低碳运行提供更坚实的理论与技术支撑。

NOTES

*通讯作者。

参考文献

[1] Plappally, A.K. and Lienhard V, J.H. (2012) Energy Requirements for Water Production, Treatment, End Use, Reclamation, and Disposal. Renewable and Sustainable Energy Reviews, 16, 4818-4848. [Google Scholar] [CrossRef
[2] 温华, 钟丽锦, 付晓天, 等. 城市水源选择的水-能源关联分析——以青岛为例[R]. 北京: 世界资源研究所, 2017.
[3] 国家发展和改革委员会, 生态环境部, 工业和信息化部, 等. 关于印发《减污降碳协同增效实施方案》的通知[EB/OL]. 2022-06-17.
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html, 2024-12-01.
[4] 郑成志. 碳中和自来水厂实施路径设计与实践[C]//2025(第十届)供水高峰论坛. 北京: 中国水网, 2025.
[5] 中国建筑节能协会, 重庆大学. 2024中国城乡建设领域碳排放研究报告[R]. 北京; 中国建筑节能协会, 2025.
[6] 赵荣钦, 余娇, 肖连刚, 等. 基于“水-能-碳”关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12): 3119-3134.
[7] Zhang, H.Q., Yu, J.Q., Wang, Z., Sun, L., Tong, Q., Xue, S., et al. (2025) Carbon Emission Characteristics and Reduction Technologies in Urban Wastewater Systems: A Review. Water Cycle, 6, 285-299. [Google Scholar] [CrossRef
[8] 中国城镇供水排水协会. 碳达峰与碳中和目标下供水企业绿色低碳发展的思考[EB/OL]. 2021-10-15.
https://jsjs1982.com/upload/portal/20230104/1cb79fafce6e5bfa2c743616ba0f3dcb, 2024-12-01.
[9] 王逸之, 马丰原, 丁思盈, 等. 基于模型集成的外塘养殖水质评估及预测系统设计[J]. 集成电路应用, 2024, 41(5): 123-135.
[10] Shen, D., Zhang, K., Xiao, Y., et al. (2025) Real-Time Pump Scheduling in Water Distribution Networks Using Deep Reinforcement Learning. Journal of Water Resources Planning and Management, 151, Article ID: 04025017.
[11] 李晨曦, 鲁海峰. 基于小样本数据机器学习的煤层底板突水预测[J]. 煤矿安全, 2025, 56(1): 171-179.
[12] Barros, D.B., Souza, R.G., Meirelles, G. and Brentan, B. (2023) Leak Detection in Water Distribution Networks Based on Graph Signal Processing of Pressure Data. Journal of Hydroinformatics, 25, 2281-2290. [Google Scholar] [CrossRef
[13] Zhang, Z. and Isufi, E. (2025) Algorithm-Informed Graph Neural Networks for Leakage Detection in Water Distribution Networks. Journal of Hydroinformatics, 27, 345-362.
[14] Venkatesh, G. and Brattebø, H. (2011) Energy Consumption, Costs and Environmental Impacts for Urban Water Cycle Services: Case Study of Oslo (Norway). Energy, 36, 792-800. [Google Scholar] [CrossRef
[15] Ghisi, E., Tavares, D.d.F. and Rocha, V.L. (2009) Rainwater Harvesting in Petrol Stations in Brasília: Potential for Potable Water Savings and Investment Feasibility Analysis. Resources, Conservation and Recycling, 54, 79-85. [Google Scholar] [CrossRef
[16] Li, J., Zhu, Y.G., Peng, S.M., et al. (2024) Integrated Carbon Emission Measurement Model for the Social Water Cycle; Taking the Yellow River Basin as an Example. Journal of Tsinghua University, 64, 626-637.
[17] Qin, J., Ma, Y.Q., Wang, X.J., et al. (2024) Spatial and Temporal Evolution Characteristics and Influencing Factors of Carbon Emissions in the Whole Life Cycle of Urban Water System; Based on the Perspective of 265 Cities in China. Journal of Cleaner Production, 489, Article ID: 144523.
[18] Zhang, L., Zhao, Y., Ma, Q., et al. (2021) Carbon Emissions of Urban Water System Based on Water-Energy-Carbon Nexus. Acta Geographica Sinica, 76, 3119-3134.
[19] 中国城镇供水排水协会. 城镇水务系统碳核算与减排路径技术指南[M]. 北京: 中国建筑工业出版社, 2024.
[20] Romano, M., Kapelan, Z. and Savić, D.A. (2014) Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. Journal of Water Resources Planning and Management, 140, 457-467. [Google Scholar] [CrossRef
[21] Lingom, P.M., Weyer, J. and Vaidya, U. (2023) Deep Reinforcement Learning for Optimal Pump Control in Water Distribution Systems. Water Research, 241, Article ID: 120161.
[22] Bunn, S. and Reynolds, L. (2009) The Energy Savings Potential of Variable Speed Control for Constant Flow Water Pumping Applications. Water Asset Management International, 5, 12-18.
[23] Lu, S., Qiu, J., Bai, L., et al. (2023) Carbon Emissions of Water Supply Systems in China; Characteristic, Boundary, and Reduction Potential Assessment. Journal of Cleaner Production, 398, Article ID: 136628.
[24] Gupta, A., Bokde, N., Marathe, D. and Kulat, K. (2017) Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques. Engineering, Technology & Applied Science Research, 7, 1528-1534. [Google Scholar] [CrossRef
[25] Araujo, L.S., Ramos, H. and Coelho, S.T. (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resources Management, 20, 133-149. [Google Scholar] [CrossRef
[26] Stokes, C.S., Maier, H.R. and Simpson, A.R. (2015) Water Distribution System Pumping Operational Greenhouse Gas Emissions Minimization by Considering Time-Dependent Emissions Factors. Journal of Water Resources Planning and Management, 141, Article ID: 04014088. [Google Scholar] [CrossRef
[27] Herrera, M., Torgo, L., Izquierdo, J. and Pérez-García, R. (2010) Predictive Models for Forecasting Hourly Urban Water Demand. Journal of Hydrology, 387, 141-150. [Google Scholar] [CrossRef
[28] Du, B., Huang, S., Guo, J., Tang, H., Wang, L. and Zhou, S. (2022) Interval Forecasting for Urban Water Demand Using PSO Optimized KDE Distribution and LSTM Neural Networks. Applied Soft Computing, 122, Article ID: 108875. [Google Scholar] [CrossRef
[29] Kühnert, C., Gonuguntla, N.M., Krieg, H., Nowak, D. and Thomas, J.A. (2021) Application of LSTM Networks for Water Demand Prediction in Optimal Pump Control. Water, 13, Article No. 644. [Google Scholar] [CrossRef
[30] Wu, W., Pan, X., Kang, Y., Xu, Y. and Han, L. (2024) To Feel the Spatial: Graph Neural Network-Based Method for Leakage Risk Assessment in Water Distribution Networks. Water, 16, Article No. 2017. [Google Scholar] [CrossRef
[31] Wang, D., Ye, W.L., Wu, G.X., et al. (2022) Greenhouse Gas Emissions from Municipal Wastewater Treatment Facilities in China from 2006 to 2019. Scientific Reports, 12, Article No. 9823.
[32] Zhang, Q., Smith, K., Zhao, X., Jin, X., Wang, S., Shen, J., et al. (2021) Greenhouse Gas Emissions Associated with Urban Water Infrastructure: What We Have Learnt from China’s Practice. WIREs Water, 8, e1529. [Google Scholar] [CrossRef
[33] He, Y., Li, Y., Li, X., et al. (2023) Net-Zero Greenhouse Gas Emission from Wastewater Treatment; Mechanisms, Opportunities and Perspectives. Renewable and Sustainable Energy Reviews, 184, Article ID: 113559.
[34] Mu, L., Zheng, F., Tao, R., Zhang, Q. and Kapelan, Z. (2020) Hourly and Daily Urban Water Demand Predictions Using a Long Short-Term Memory Based Model. Journal of Water Resources Planning and Management, 146, Article ID: 05020017. [Google Scholar] [CrossRef
[35] Salloom, T., Kaynak, O. and He, W. (2021) A Novel Deep Neural Network Architecture for Real-Time Water Demand Forecasting. Journal of Hydrology, 599, Article ID: 126353. [Google Scholar] [CrossRef
[36] Zanfei, A., Brentan, B.M., Menapace, A. and Righetti, M. (2022) A Short-Term Water Demand Forecasting Model Using Multivariate Long Short-Term Memory with Meteorological Data. Journal of Hydroinformatics, 24, 1053-1065. [Google Scholar] [CrossRef
[37] Pu, Z., Yan, J., Chen, L., Li, Z., Tian, W., Tao, T., et al. (2022) A Hybrid Wavelet-CNN-LSTM Deep Learning Model for Short-Term Urban Water Demand Forecasting. Frontiers of Environmental Science & Engineering, 17, Article No. 22. [Google Scholar] [CrossRef
[38] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. [Google Scholar] [CrossRef
[39] Chen, T.Q. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794. [Google Scholar] [CrossRef
[40] Chen, G., Long, T., Xiong, J. and Bai, Y. (2017) Multiple Random Forests Modelling for Urban Water Consumption Forecasting. Water Resources Management, 31, 4715-4729. [Google Scholar] [CrossRef
[41] Grigoryan, H. (2026) Short-Term Water Demand Forecasting: A Comparative Study of Deep Learning and Conventional Machine Learning Algorithms. In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods, Springer, 325-336.
[42] Menke, R., Abraham, E., Parpas, P. and Stoianov, I. (2016) Demonstrating Demand Response from Water Distribution System through Pump Scheduling. Applied Energy, 170, 377-387. [Google Scholar] [CrossRef
[43] Hu, P., Tong, J., Wang, J., Yang, Y. and Oliveira Turci, L.D. (2019) A Hybrid Model Based on CNN and Bi-LSTM for Urban Water Demand Prediction. 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, 10-13 June 2019, 1088-1094. [Google Scholar] [CrossRef
[44] Zhou, Q., Deng, X.F., Wu, W., et al. (2022) Daily Urban Water Demand Forecasting Based on Chaotic Theory and Continuous Deep Belief Neural Network. Neural Computing and Applications, 34, 20203-20217.
[45] Fan, S., Pardo, A., Xu, Z., et al. (2025) Graph Neural Networks to Model and Optimize the Operation of Water Distribution Networks: A Review. Smart Water, 10, 1-25.
[46] Zanfei, A., Brentan, B.M., Menapace, A., Righetti, M. and Herrera, M. (2022) Graph Convolutional Recurrent Neural Networks for Water Demand Forecasting in Water Distribution Networks. Water Resources Research, 58, e2022WR032299. [Google Scholar] [CrossRef
[47] Örn Garðarsson, G., Boem, F. and Toni, L. (2022) Graph-Based Learning for Leak Detection and Localisation in Water Distribution Networks. IFAC-PapersOnLine, 55, 661-666. [Google Scholar] [CrossRef
[48] Wu, M., Zhang, Y., Li, J., et al. (2024) A Convolutional Graph Neural Network Model for Water Distribution Network Leakage Detection Based on Segment Feature Fusion Strategy. Water, 16, 3555.
[49] Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780. [Google Scholar] [CrossRef] [PubMed]
[50] Pascanu, R., Mikolov, T. and Bengio, Y. (2013) On the Difficulty of Training Recurrent Neural Networks. International Conference on Machine Learning. PMLR, Atlanta, 17-19 June 2013, 1310-1318.
[51] Li, Q., Han, Z. and Wu, X.M. (2018) Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32, 3538-3545. [Google Scholar] [CrossRef
[52] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J. and Sun, X. (2020) Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 3438-3445. [Google Scholar] [CrossRef
[53] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2021) A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32, 4-24. [Google Scholar] [CrossRef] [PubMed]
[54] Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S., et al. (2021) Challenges of Real-World Reinforcement Learning: Definitions, Benchmarks and Analysis. Machine Learning, 110, 2419-2468. [Google Scholar] [CrossRef
[55] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and Meger, D. (2018) Deep Reinforcement Learning That Matters. Proceedings of the AAAI Conference on Artificial Intelligence, 32, 3207-3214. [Google Scholar] [CrossRef
[56] Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., et al. (2020) Criteria for Classifying Forecasting Methods. International Journal of Forecasting, 36, 167-177. [Google Scholar] [CrossRef
[57] Abdallah, M. and Kapelan, Z. (2019) Fast Pump Scheduling Method for Optimum Energy Cost and Water Quality in Water Distribution Networks with Fixed and Variable Speed Pumps. Journal of Water Resources Planning and Management, 145, Article ID: 04019055. [Google Scholar] [CrossRef
[58] Wang, X., Luo, D., Zhao, X. and Sun, Z. (2018) Estimates of Energy Consumption in China Using a Self-Adaptive Multi-Verse Optimizer-Based Support Vector Machine with Rolling Cross-Validation. Energy, 152, 539-548. [Google Scholar] [CrossRef
[59] Chen, H., Liu, Y., Zhang, M., et al. (2025) Deep Learning Approach to Energy Consumption Modeling in Wastewater Pumping Systems. Scientific Reports, 15, Article No. 23158.
[60] Hajgató, G., Paál, G. and Gyires-Tóth, B. (2020) Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water Distribution Systems. Journal of Water Resources Planning and Management, 146, 4715-4731. [Google Scholar] [CrossRef
[61] Pei, S., Hoang, L., Fu, G. and Butler, D. (2025) Real-Time Pump Scheduling in Water Distribution Networks Using Deep Reinforcement Learning. Journal of Water Resources Planning and Management, 151, Article ID: 04025017. [Google Scholar] [CrossRef
[62] Li, L., Rong, Y., Qian, Y., et al. (2021) Zone Scheduling Optimization of Pumps in Water Distribution Networks with Deep Reinforcement Learning and Knowledge-Assisted Learning. Soft Computing, 25, 13755-13768.
[63] Guo, J., Sun, H. and Du, B. (2022) Multivariable Time Series Forecasting for Urban Water Demand Based on Temporal Convolutional Network Combining Random Forest Feature Selection and Discrete Wavelet Transform. Water Resources Management, 36, 3385-3400. [Google Scholar] [CrossRef
[64] Xenochristou, M. and Kapelan, Z. (2020) An Ensemble Stacked Model with Bias Correction for Improved Water Demand Forecasting. Urban Water Journal, 17, 212-223. [Google Scholar] [CrossRef
[65] Abdallah, M. and Kapelan, Z. (2024) Optimizing Pump Operations in Water Distribution Networks: Balancing Energy Efficiency, Water Quality and Operational Constraints. Cleaner Engineering and Technology, 20, Article ID: 100680.
[66] Filipe, J., Bessa, R.J., Reis, M., Alves, R. and Póvoa, P. (2019) Data-Driven Predictive Energy Optimization in a Wastewater Pumping Station. Applied Energy, 252, Article ID: 113423. [Google Scholar] [CrossRef
[67] Wang, Z., Zhang, K. and Shen, D. (2024) Real-Time Multi-Objective Optimization of Pump Scheduling in Water Distribution Networks Using Neuro-Evolution. Cleaner Engineering and Technology, 23, Article ID: 100858.
[68] 郭盛杰, 黄海伟, 董欣, 等. 中国城镇污水处理行业温室气体排放核算及其时空特征分析[J]. 给水排水, 2019, 55(4): 56-62.
[69] 翁晓姚. 碳达峰与碳中和目标下供水企业绿色低碳发展的思考[J]. 净水技术, 2022, 41(5): 1-4, 13.
[70] Brentan, B.M., Luvizotto, E., Herrera, M., et al. (2024) Battle of Water Demand Forecasting: An Optimized Deep Learning Model. Engineering Proceedings, 8, 56.